This Information Is Provided By **CBTricks.com**

Uniden PRO-520e Service Manual

Liability of damages to any equipment is the sole responsibility of the user! Downloading, viewing, or using any information provided on these pages automatically accepts the user to the terms of this agreement!

Modifications are provided for information purposes only!

Supporters of CBTricks.com paid for the hosting so you would have this file.

CBTricks.com is a non-commercial personal website was created to help promote the exchange of service, modification, technically oriented information, and historical information aimed at the Citizens Band, GMRS (CB "A" Band), MURS, Amateur Radios and RF Amps.

CBTricks.com is not sponsored by or connected to any Retailer, Radio, Antenna Manufacturer or Amp Manufacturer, or affiliated with any site links shown in the links database. The use of product or company names on my web site is not endorsement of that product or company.

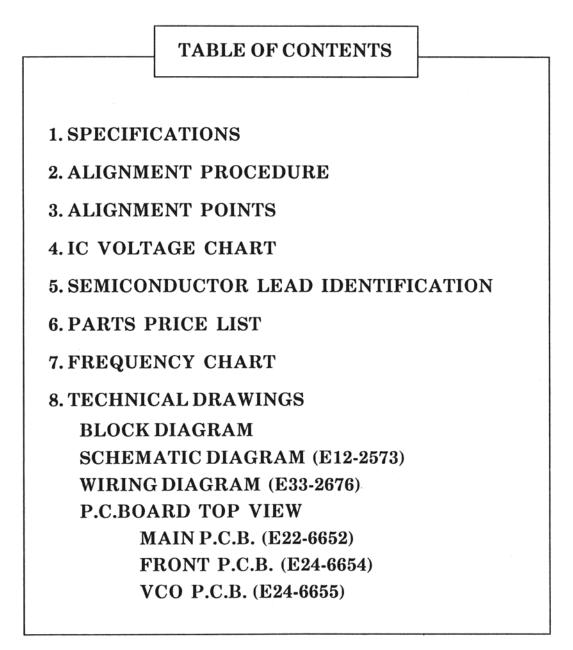
The site is supported with donations from users, friends and selling of the Site Supporters DVD's to cover some of the costs of having this website on the Internet instead of relying on banner ads, pop-up ads, commercial links, etc. Thus I do not accept advertising banners or pop-up/pop-under advertising or other marketing/sales links or gimmicks on my website.

ALL the money from donations is used for CBTricks.com I didn't do all the work to make money (I have a day job). This work was not done for someone else to make money also, for example the ebay CD sellers.

All Trademarks, Logos, and Brand Names are the property of their respective owners. This information is not provided by, or affiliated in any way with any radio or antenna Manufacturers. Thank you for any support you can give.

> For information on how to Support CBTricks.com http://www.cbtricks.com/support/

CB TRANSCEIVER MODEL : PRO 520e


UNIDEN CUSTOMER SERVICE 9340 Castlegate Drive Indianapolis IN 46256 (317) 842 - 2483

SERVICE INFORMATION MANUAL

UNIDEN PARTS DEPT. 9319 Castlegate Drive Indianapolis IN 46256 (317) 842 - 1036

CB TRANSCEIVER

MODEL : PRO 520e

1. SPECIFICATIONS

CB A	M TRANSCEIVER MODEL: PRO 52	0e	(UT-317A)
GENE	RAL		
1.	Channels	:	40
2.	Frequency Range	:	26.965 MHz to 27.405 MHz
3.	Semiconductors	:	12 Transistors, 33 Diodes, 7 IC's 1-19 Segments Hybrid Type LED
4.	Crystal Oscillators	:	1
5.	Microphone	:	Electret Condenser Type
6.	Speaker	:	16 ohm 3 W Max
7.	Antenna Connector	:	М-Туре
8.	Jacks & Connectors	:	Mic5p DinEXT SP 3.5ϕ PASP 3.5ϕ
9.	Controls	:	Channel Selector, Volume/Power ON-OFF, Squelch, RF Gain, CH9/OFF, PA/CB, ANL/OFF
10.	LED Bar Meter	:	RF Output Power, Signal Strength,
11.	Illumination Indicators (LED)	:	Channel Readout, TX
12.	Cabinet Size	:	W: 116 mm H: 36 mm D: 166.5 mm
13.	Weight	:	0.75 kg
14.	Accessories	:	Microphone, Microphone Hanger, Mounting Bracket with Screws

MEASUREMENT CONDITIONS

1.	Standard DC Power	:	13.8V DC
2.	Test Temperature	:	25°C +5°C
3.	Standard Audio Frequency	:	1kHz
4.	Standard RF Input	:	lmV
5.	Standard Ref. Modulation	:	30%
6.	Standard Ref. Audio Output	:	0.5W
7.	Standard Ref. Audio Load	:	8 ohm Resistive
8.	Antenna Impedance	:	50 ohm
9.	Measurement Channel	. :	19
10.	Standard Method of Measureme	nt:	EIA RS-382 (ISS : 8-26-86)

NOTE: Limit specs. are for measurement on all channels.

RECEIVER (ANL OFF)

	ITMS	UNIT	NOMINAL	LMIT
1.	Usable Sensitivity (10dB S/N) $$	uV	0.5	1
2.	Max. Sensitivity	uV	0.5	1
3.	RF Gain Range	dB	30	20
4.	Audio Output @ 10% THD	W	4.0	2.0
5.	Max. Audio Output Power	W	7.0	3.0
6.	Max. S/N @ 1mV	dB	35	25
7.	Squelch Sensitivity: Threshold Tight	uV uV	0.5 1000	1.0 250 to 4000
8.	AGC Figure of Merit (50 mV for 10 dB Change)	dB	85	75
9.	Audio Response (Refer to 1kHz @ 6 dB down Lower Upper) Hz Hz	300 2000	400 Max 1600 Min
10.	Detector Linearity lmV, 30% Mod.	%THD	4.0	7.0
11.	ANL Performance	dB	4	7
12.	Adjacent Ch. Rejection	dB	60	45
13.	"S" Indicator (4th LED just 0 (No Mod.)	N) uV	1000	500 Min
14.	Spurious Resp. - 22.734MHz (Ch 40) - All other freqs.	dB dB	50 55	40 45
15.	Image Rejection Ratio (900 kHz)	dB	80	60

	ITMS	UNIT	NOMINAL	LIMIT
16.	i-f Rejection Ratio 1ST & 2ND	dB	70	60
17.	l/2 i-f Rejection Ratio	dB	55	45
18.	Oscillator Drop Out Voltage	v	9.0	11.0
19.	Public Address Output @ 10%THD	W	3.0	2.0
20.	Battery Drain - No Signal - Max. Audio	mA mA	250 1400	350 1700
TRAN	ISMITTER			
1.	Carrier Power - No Mod.	W	4.0	3.6 to 4.4
2.	Frequency Tolerance after 5 min.	%	<u>+</u> 0.002	<u>+</u> 0.003
3.	Spurious Harmonic Emission	dB	-70	-60
4.	Battery Drain - No Mod. - 80% Mod.	mA mA	850 1300	1300 1700
5.	Modulation Freq. Resp.			

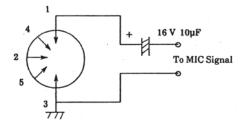
Modulation Freq. Resp.			
(lkHz, OdB Ref) 300Hz	dB	-6	C to -12
2500Hz	dB	-6	6 to -12
Microphone Sensitivity			
50% Mod.	mV	7	15
AMC Range 50 to 100% Mod.	dB	36	30
Transmit Hum & Noise	dB	50	40
Relative Power Meter (No Mod.)	4th	3 Min
		just ON	
Transmit Distortion (1kHz, 80% Mod.)	%	4.0	7.0
	<pre>(1kHz, 0dB Ref) 30CHz 2500Hz Microphone Sensitivity 50% Mod. AMC Range 50 to 100% Mod. Transmit Hum & Noise Relative Power Meter (No Mod. Transmit Distortion</pre>	<pre>(1kHz, 0dB Ref) 300Hz dB 2500Hz dB Microphone Sensitivity 50% Mod. mV AMC Range 50 to 100% Mod. dB Transmit Hum & Noise dB Relative Power Meter (No Mod.) Transmit Distortion %</pre>	(1kHz, 0dB Ref)300HzdB-62500HzdB-6Microphone Sensitivity50% Mod.mV50% Mod.mV7AMC Range 50 to 100% Mod.dB36Transmit Hum & NoisedB50Relative Power Meter (No Mod.)4th just ONTransmit Distortion%4.0

OVERALL PERFORMANCE

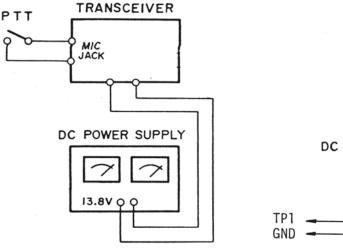
- 1. Output Protection: Shall meet for 5 minutes for all VSWR'S (around the Smith Chart) of 20:1 without damage.
- Output stability of all VSWR'S (around the Smith Chart) of up to 5:1 under continuous operation of a duty cycle of 5 minutes transmitting, and 1 minute receiving.
- 3. Reverse Polarity Protection: Shall have reverse polarity protection and be operable with positive and negative grounding.
- 4. Standard Operating Temperature: -30°C to +50°C
- 5. Storage Temperature: -40°C to +70°C
- 6. Electrostatic Discharge Protection: All external case and component parts shall withstand the application of 15kV ESD without causing failure or malfunction to the unit.

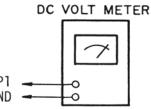
Test Conditions - Probe: 150 pF with 500 ohm in series Temp.: 25°C

2. ALIGNMENT PROCEDURE


ALIGNMENT OF P.L.L. PORTION

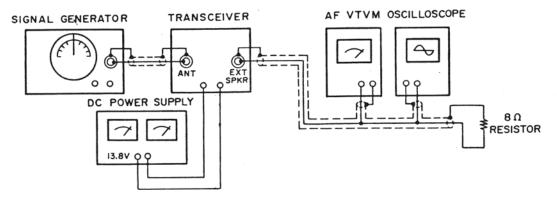
1. Test Equipment Required


- a. Oscilloscope (0 50 MHz)
- b. DC Power Supply (13.8V)
- c. DC Voltmeter (10V maximum, 100 Kohm/V)
- 2. Alignment Procedure


STEP	PRESET TO	ADJUSTMENT	REMARKS
1	TX Mode CH : 40 No Modulation	L702	Connect DC Voltmeter to TPl (Lead of R77). Adjust for approx. 4.5V on DC Voltmeter
2	RX Mode CH : 40 No Modulation	L701	Same as step 1.

* Note : MIC Signal Line of Dummy MIC requires electrolytic condenser due to MIC Jack J502's No. 1 pin added DC Voltage.

3. Test Equipment Connection

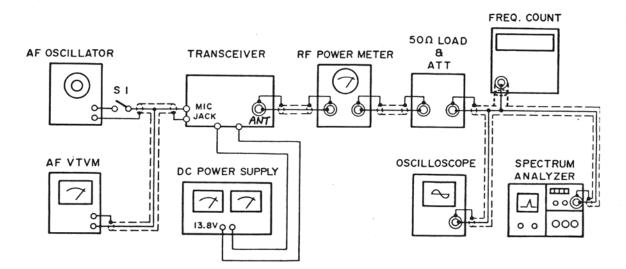


ALIGMENT OF RECEIVER PORTION

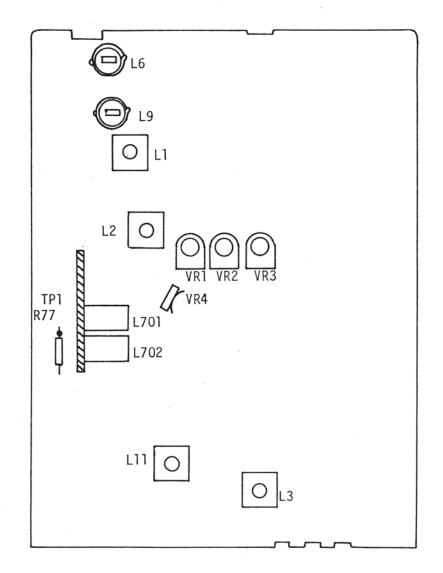
- 1. Test Equipment Required
 - a. RF Signal Generator (27 MHz Band, 1000 Hz, 30% Modulation & Output Impedance 50 ohm)
 - b. AF VTW
 - c. Oscilloscope (0 50 MHz)
 - d. Dummy Load (8 ohm, 5 watts, resistive (General Output Power))
 - e. DC Power Supply (13.8 V)
 - f. DC Voltmeter
- 2. Alignment Procedure

STEP	PRESET TO	ADJUSTMENT	REMARKS
1	RX Mode CH : 19 VOL : MAX SQL : MIN ANL : OFF RF Gain : MAX CH9 : OFF PA : OFF	L1, L2, L3 L11	Connect RF SSG to ANT Connector (J501) and set it 27.185 MHz. Connect AF VTVM to EXT. SPK. Jack(J3). Adjust coils for maximum reading on AF VTVM.
2	Same as above.	VR4	Set the SSG Attenuator to 0.25uV and ad- just the output power to normal position. If the output power is less than normal, keep resistance value of VR4 at minimum (CW) and keep it at maximum (CCW) if over normal to the contrary.
3	Same as Step 1 except SQL : Max	VR1 (Squelch)	Set the RF Signal Generator to 1000uV output level. Adjust VR1 for 2V on AF VTVM.
4	Same as step l No Modulation	VR 3	Set the RF Signal Genertor to 1000uV output level. Adjust VR3 so that 4th digit of LED meter of the unit just illuminates.

3. Test Equipment Connection


ALIGNMENT OF TRANSMITTER PORTION

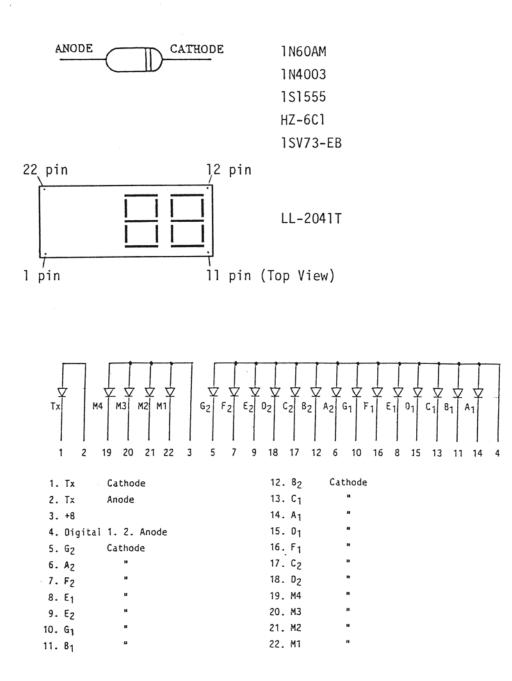
- 1. Test Equipment Required
 - a. RF VTVM (Full Scale : 1V DC with RF Probe)
 - b. RF Power Meter
 - c. Field Strength Meter
 - d. Frequency Counter (0 50 MHz)
 - e. DC Power Supply (13.8 V)
 - f. Oscilloscope (0 50 MHz)
 - g. AF Oscillator

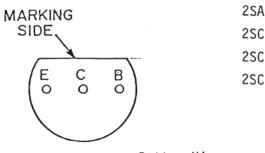

2. Alignment Procedure

STEP	PRESET TO	ADJUSTMENT	REMARKS
1	TX Mode CH : 19 1 KHz 80% Modulation	L6, L9	Connect RF Power Meter to ANT. Jack (J501). Adjust for maximum reading.
2	TX Mode CH : 19 No Modulation	L6	Adjust for 4.0W on RF Power Meter.
3	Same as step 2	VR2	Adjust VR2 so that 4th digit of LED meter of the unit just illuminates.

3. Test Equipment Connection

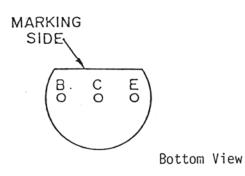
3. ALIGNMENT POINTS


4. IC VOLTAGE CHART

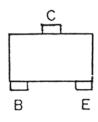

IC NO.	IC NAME	IC PIN NO	RX	(V)	TX (V)
		1	0.8	RF GAIN 1.2	0.8
		Z	1.5	1.5	1.5
		3	8	8	8
		4	1.5	1.5	1.5
1	LA 1185	5	0	0	0
		6	2.5	2,5	2.5
	-	2	7.2	7.2	7.2
		8	8	8	8
		9	8	8	8
		/		7. 8	7.8
		z	/	. 4	1.4
		3		3	8
		4		. 4	1.4
		5	/	. 4	1.4
		6		. 4	7.4
		7		3	8
2	TDA 1220 B	8		2.8	0.8
		9		1.8	1.8
		10		7.9	7.9
		11		2	0
		12	6	2	0
		13	6	2	0
		14		7.4	7.4
		15		7.4	7.4
		16		0	0
		/	0.Z	SQ MAX 0.2	0.2
		2	1.2	1.2	1.2
		3	1.2	1.2	1.2
3	MSZZJL	4	0	0	0
		5	2	1.Z	Z
		6	1.6	1.6	1.6
		2	6.5	0	7
		, 8	8	8	8

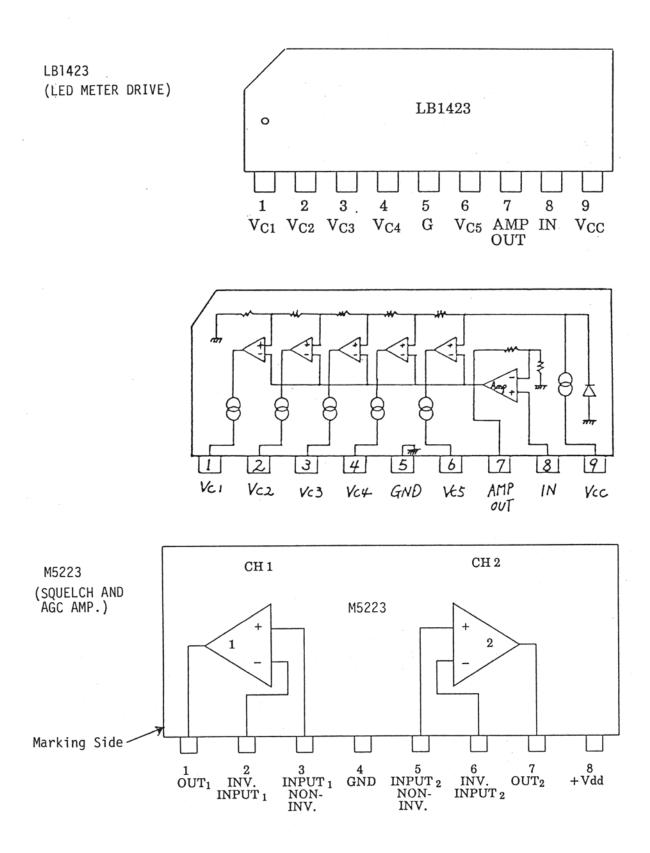
1C NO.	IC NAME	IC PIN NO.	R	x (V)	TX (V)
		/	7	SQ MAX 7	7
		Z	13.6	13.6	13.6
		3	13.6	13.6	13.6
		4	3	.0	2.2
		5	0	0	0
		6	2.5	z.5	z.5
		2	2.5	Z.5	2.5
4	700.000	8	2.4	2.4	z.4
4	TDA 1905	9	0	0	0
		10	0	0	0
		11	0	0	0
		12	0	0	0
		13	0	0	0
		14	0	0	0
		15	0	0	0
		1.6	0	0	0
		1		2.6	2.6
		2		3	3
		3		6	6
		4		5	6
		5		3	3
		6	3		3
		7		3	3.6
		8		0.2	5.8
		9	2.9		Z.9
5	SM5124 A	10	0,6		0.6
		11	0,6		0.6
		12	0.6		0.6
		13	6		6
		14			6.4
		15	6.9		0.4
		16		6.4	6.4
	<i>.</i>	17		6.4	6.4
		18		0	0
		10		3.6	13.6
6	27808 CV	2		0	0
-		3		8	8
		1		6	6
		2		6	6
		3		6	6
		4	and the second se	6	6
7	LB 1423	5	and the second	0	0
		6		0.Z	0.Z
		2			
		8		0.2	0.2
	1	8		0.Z 4	<u> </u>

5. SEMICONDUCTOR LEAD IDENTIFICATION

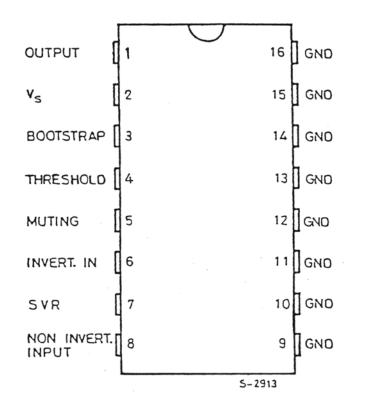

DIODE

Bottom View

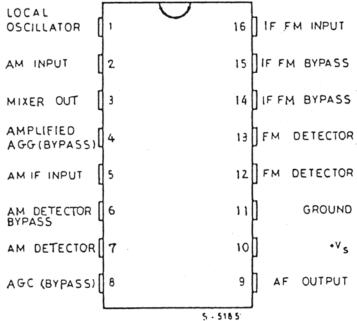

2SC2086-D

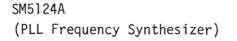

2SC2814-F5

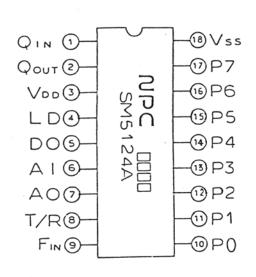
Bottom View

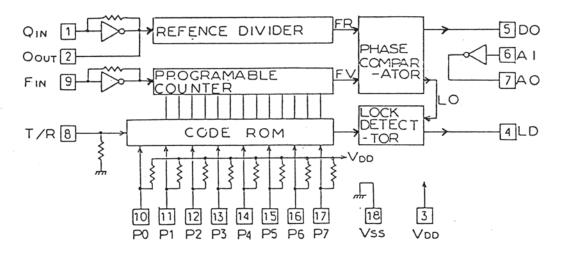

2SC2166-C

Top View

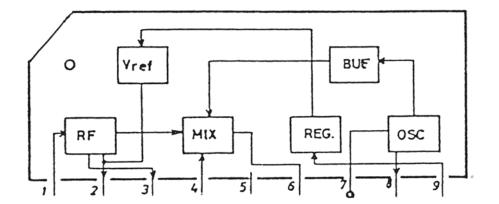


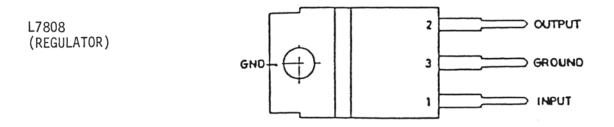


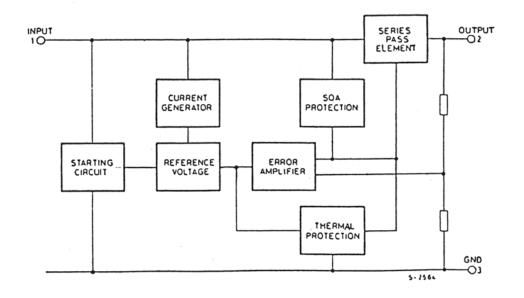



TDA1220B (* 2nd Mix. * 2nd IF Amp.

- * DET
- * AGC)







6. PARTS PRICE LIST

(MODEL) UT317AT PRO-520E

UT317AT	PR0-520E					
(PARTS CODE)	(DESCRIPTION)		(SYMBOL)	(Q'TY)	(LI	ST PRICE)
BCCC811204Z	CAPACITOR:CERAMIC	12PF 50V J CH	C065	1	\$	0.145
BCCC812215Z	CAPACITOR: CERAMIC	220PF 50V K CH	C033	1	\$	0.304
			C 0 3 5	1	S	0.304
BCCC813305Z	CAPACITOR: CERAMIC	33PF 50V K CH	C034	1	S	0.145
BCCC815604Z	CAPACITOR:CERAMIC	56PF 50V J CH	C068	1	\$	0.158
BCCF812091Z	CAPACITOR: CERAMIC	2PF 50V C CK	C040	1	\$	0.145
BCCG811515Z	CAPACITOR: CERAMIC	150PF 50V K SL	C 5 O 1	1	\$	0.139
BCCG815615Z	CAPACITOR:CERAMIC	560PF 50V K SL	C069.	1	\$	0.297
BCCU811805Z	CAPACITOR:CERAMIC	18PF 50V K UJ	c 0 0 1	1	s	0.145
BCCU812215Z	CAPACITOR:CERAMIC	220PF 50V K UJ	C 0 4 1	1	\$	0.205
BCCU813305Z	CAPACITOR:CERAMIC	33PF 50V K UJ	c101	1	\$	0.145
BCCU813315Z	CAPACITOR: CERAMIC	330PF 50V K UJ	C036	1	\$	0.238
BCCU814715Z	CAPACITOR: CERAMIC	470PF 50V K UJ	C045	1	\$	0.304
BCCU818205Z	CAPACITOR:CERAMIC	82PF 50V K UJ	C007	1	\$	0.145
BCEF114706Z	CAPACITOR:ELECTROLYTIC	47UF 10V M C-059	C O 1 4	1	\$	0.211
			C016	1	s	0.211
BCEF812296Z	CAPACITOR:ELECTROLYTIC	2.2UF 50V M C-059	C 0 3 2	1	\$	0.185
BCEF814796Z	CAPACITOR:ELECTROLYTIC	4.7UF 50V M C-059	C 0 1 2	1	s	0.185
BCEL111010Z	CAPACITOR: ELECTROLYTIC	100UF 10V	C 0 8 2	1	\$	0.389
BCEL112200Z	CAPACITOR:ELECTROLYTIC	22UF 10V	C 0 7 5	1	\$	0.284
			C 0 7 7	1	\$	0.284
BCEL112210Z	CAPACITOR: ELECTROLYTIC	220UF 10V	C066	1	\$	0.449
BCEL114700Z	CAPACITOR:ELECTROLYTIC	47UF 10V	C O 5 3	1	s	0.284
			C 0 7 1	1	\$	0.284
			C 0 7 6	1	\$	0.284
BCEL 311000Z	CAPACITOR:ELECTROLYTIC	10UF 16V	C 0 7 3	1	\$	0.284

87/ 1/21	UCA PARTS P	RICE LI	ST (PPLO458)			PAGE	2
(MODEL) UT317AT	PR0-520E						
(PARTS CODE	(DESCRIPTION)			(SYMBOL)	(Q'TY)	(LIS	T PRICE)
BCEL311000Z	CAPACITOR: ELECTROLYTIC	10UF	16V	C 087	1	\$	0.284
BCEL514710Z	CAPACITOR: ELECTROLYTIC	470UF	25V	C 0 5 1	1	s	1.056
BCEL811090Z	CAPACITOR: ELECTROLYTIC	1 U F	50V	C 0 2 1	1	\$	0.284
8				C 0 3 7	1	\$	0.284
				C 0 5 6	1	s	0.284
				C 0 9 4	1	s	0.284
BCEL812280Z	CAPACITOR: ELECTROLYTIC	0.22UF	5 O V	C O 1 8	1	\$	0.284
BCEL812290Z	CAPACITOR: ELECTROLYTIC	2.2UF	50V	C O 5 5	1	\$	0.284
				C 0 6 1	1	\$	0.284
				C063	1	\$	0.284
				C 0 6 4	1	s	0.284
BCEL814780Z	CAPACITOR ELECTROLYTIC	0.47UF	50V	C072	1	\$	0.284
BCEL814790Z	CAPACITOR: ELECTROLYTIC	4.7UF	50V	C 0 2 6	1	\$	0.284
				C 0 2 8	1	\$	0.284
				C 0 7 0	1	s	0.284
BCER511026Z	CAPACITOR: ELECTROLYTIC	1000UF	25V M C-095	C 0 5 2	1	s	1.855
BCGC5110352	CAPACITOR:SEMI CONDUCTOR(SR)	0.01UF	25V K	C019	1	s	0.205
				C057	1	\$	0.205
				C 0 6 2	1	\$	0.205
				C083	1	\$	0.205
B C G C 5 1 1 0 4 5 Z	CAPACITOR:SEMI-CONDUCTOR(SR)	0.1UF	25 У К	C054	1	s	0.462
				C059	1	\$	0.462
				C074	1	\$	0.462
BCGC512235Z	CAPACITOR:SEMI-CONDUCTOR(SR)	0.022UF	25V К	C025	1	\$	0.211
				C 0 7 8	1	\$	0.211
				C079	1	\$	0.211

(MODEL)

UT317AT	PR0-520E					
(PARTS CODE) (DESCRIPTION)		(SYMBOL)	(Q'TY)	(LI	ST PRICE)
BCGC514735Z	CAPACITOR: SEMI-CONDUCTOR (SR)	0.047UF 25V K	C011	1	\$	0.304
			C023	1	\$	0.304
			C 0 2 4	1	\$	0.304
			C O 5 8	1	\$	0.304
			C081	1	\$	0.304
			C089	1	\$	0.304
			C 0 9 2	1	\$	0.304
B C G C 5 1 8 2 2 5 Z	CAPACITOR:SEMI-CONDUCTOR(SR)	0.0082UF 25V K	C027'	1	\$	0.205
BCKB811025Z	CAPACITOR:CERAMIC	0.001UF 50V K YB(B)	C 0 1 7	1	\$	0.139
			C 0 2 2	1	\$	0.139
			C048	1	\$	0.139
B C K C 5 1 4 7 3 0 Z	CAPACITOR: CERAMIC	0.047UF 25V Z ZF	C004	1	\$	0.218
			C067	1	\$	0.218
			C 105	1	\$	0.218
B C K D 8 1 1 0 2 6 Z	CAPACITOR:CERAMIC	0.001UF 50V M YD	C005	1	\$	0.119
			C006	1	\$	0.119
			C 0 1 3	1	\$	0.119
			C 0 4 2	1	\$	0.119
			C047	1	\$	0.119
			C 0 8 4	1	\$	0.119
			C 0 8 5	1	\$	0.119
			C086	1	\$	0.119
			C 0 9 0	1	\$	0.119
			c103	1	\$	0.119
BCKD811036Z	CAPACITOR:CERAMIC	0.01UF 50V M YD	C O 4 4	1	\$	0.218
			C 0 9 6	1	\$	0.218

(MODEL) UT317AT	PR0-520E								
(PARTS CODE	(DESCRIPTION)				(5	YMBOL)	(Q•TY)	(LIS	ST PRICE)
BCKD814726Z	CAPACITOR: CERAMIC		0.0047UF	50V M	YD	C 0 9 5	1	\$	0.165
						C 0 9 7	1	\$	0.165
BCK6811030Z	CAPACITOR: CERAMIC		0.01UF	50V Z	YF	C005	1	\$	0.139
						C009	1	\$	0.139
						C046	1	\$	0.139
						C088	1	\$	0.139
B CKG 8 1 4 7 2 0 Z	CAPACITOR: CERAMIC		0.004705	50V Z	YF	C 0 0 3	1	\$	0.125
						C008	1	\$	0.125
						¢031	1	\$	0.125
						C 0 4 3	1	\$	0.125
						C060	1	s	0.125
						C104	1	\$	0.125
						C 5 5 1	1	\$	0.125
						C 5 5 2	1	\$	0.125
BCVL813904Z	CAPACITOR:CERAMIC	CHIP	39PF ŚCV	J SL (-140 TAPE	C701	1	\$	0.185
						C705	1	\$	0.185
						C711	1	\$	0.185
BCVL814704Z	CAPACITOR:CERAMIC	CHIP	47PF 50	V J SL	C-140 TAPE	C707	1	\$	0.185
BCVL816804Z	CAPACITOR: CERAMIC	CHIP	68PF 50V	JSLO	-140 TAPE	C712	1	\$	0.185
BCVM811504Z	CAPACITOR:CERAMIC	CHIP	15PF 50V	ЈСН (-140 TAPE	C7 06	1	\$	0.205
BCVP811015Z	CAPACITOR:CERAMIC	CHIP	100PF 5	0 к в	C-140 TAPE	C708	1	\$	0.185
BCVP811025Z	CAPACITOR:CERAMIC	CHIP	0.0010 5	0V K E	C-140 TAPE	C 0 9 3	1	\$	0.185
BCVP813315Z	CAPACITOR:CERAMIC	CHIP	330PF 5	0 к в	C-140 TAPE	C 709	1	\$	0.185
BCVQ311036Z	CAPACITOR:CERAMIC	CHIP	0.01UF 1	6V M Y	C-140 TAPE	C702	1	\$	0.218
						C 7 0 3	1	\$	0.218

(MODEL)

87/ 1/21 UCA PARTS PRICE LIST (PPL045E) PAGE 4

C704 1 \$ 0.218

87/ 1/21

(MODEL) UT317AT PR0-520E (PARTS CODE) (DESCRIPTION) (SYMBOL) (Q'TY) (LIST PRICE) BCVQ311036Z CAPACITOR:CERAMIC CHIP C.O1UF 16V M Y C-140 TAPE C713 0.218 1 \$ C714 0.218 1 \$ BDAY0001001 DIODE 1N60 AM D026 1 \$ 0.284 BDAY0133001 DIODE 1N4003 D007 0.165 1 \$ D018 0.165 1 \$ BDAY0181001 DIODE 1\$1555 0.125 D001 1 \$ D002 1 \$ 0.125 D003 1 \$ 0.125 D004 \$ 0.125 1 D005 1 \$ 0.125 D006 \$ 0.125 1 D008 1 \$ 0.125 D009 1 \$ 0.125 D011 0.125 1 \$ D012 1 \$ 0.125 D013 1 \$ 0.125 D014 1 \$ 0.125 D015 \$ 0.125 1 D016 1 \$ 0.125 D017 1 0.125 \$ D019 1 \$ 0.125 D020 \$ 0.125 1 D G 2 1 1 \$ 0.125 D C 2 2 1 \$ 0.125 D023 1 \$ 0.125 D024 1 \$ 0.125

87/ 1/21 UCA PARTS PRICE LIST (PPL0458) PAGE 6

(MODEL) UT317AT	PR0-52UE					
(PARTS CODE)	(DESCRIPTION)		(SYMBOL)	(Q•TY)	(L I S	T PRICE)
BDAY0181001	DIODE	1 \$ 1 5 5 5	D 0 2 5	1	\$	0.125
			D027	1	\$	0.125
			D028	1	\$	0.125
			D552	1	\$	0.125
			D553	1	\$	0.125
			D 5 5 4	1	\$	0.125
			D 5 5 5	1	s	0.125
			D556	1	\$	0.125
BDAY0220001	DIODE	1SV73-EB	D701	1	\$	0.634
BDAY0269019	DIODE:ZENER	HZ-6C1	D010	1	\$	0.257
BDAY0421001	DIODE:LED	LL-2041T	0551	1	\$	7.973
BDBA0733541	TRANSISTOR	DB-027 28A733A-PB	Q005	1	\$	0.495
BDBC0941523	TRANSISTOR	DB-301 280941TM-0	Q003	1	\$	0.462
BDBC0945507	TRANSISTOR	DB-224 280945A-Q	Q001	1	\$	0.449
			Q006	1	\$	0.449
			Q007	1	\$	0.449
			QC08	1	\$	0.449
BDBC1675111	TRANSISTOR	DB-259 2801675-L	Q004	1	\$.	0.535
BDBC2086104	TRANSISTOR	DB-228 2802086-D	Q002	1	\$	2.033
BDBC2166103	TRANSISTOR	DB-331 28C2166-C	Q501	1	\$	4.561
BDBC2814641	TRANSISTOR	DB-744 28C2814-F5	TAPING Q701	1	\$	0.356
			Q702	1	\$	0.356
			Q703	1	\$	0.356
BDEY0430001	INTEGRATED CIRCUIT	LB1423	IC007	1	\$	2.812
BDEY0582001	INTEGRATED CIRCUIT	M5223L	10003	1	\$	1.822
BDEY0603001	INTEGRATED CIRCUIT	TD A 1 90 5	I C O O 4	1	\$	4.349

\$

1

3.901

(MODEL) UT317AT PR0-520E (PARTS CODE) (DESCRIPTION) (SYMBOL) (Q'TY) (LIST PRICE) BDEY0890001 INTEGRATED CIRCUIT TDA12208 IC002 1 \$ 3.161 BDEY0891001 INTEGRATED CIRCUIT SM5124A IC005 11.233 1 \$ BDEY0902001 INTEGRATED CIRCUIT LA-1185 10001 1 \$ 1.888 BDEY0924001 INTEGRATED CIRCUIT L7808CV IC006 \$ 2.244 1 BFLY0048001 FILTER:CERAMIC FL-048 SFE10.7MS2-M FT001 \$ 1.399 1 BFLY0221001 FILTER FL-221 CFW450HT 450KHZ F T 0 0 2 1 \$ 12.632 BJKY0089001 JACK JK-089 HSJ0615 J003 1 \$ 1.023 J004' 1.023 1 \$ BJKY0370001 JACK JK-370 J501 1 \$ 1.855 BJKY0374001 JACK JK-374 J502 1 \$ 1.729 BLAY0138001 COIL LA-138 TKXC-16853N L002 1 \$ 1.927 BLAY0204001 COIL LA-204 RMC-41997N L003 \$ 1.445 1 L011 \$ 1.445 1 BLAY0279001 COIL LA-279 TKXNF-25439N L001 1.756 \$ 1 BLBY0537001 COIL LB-537 V113CN-6851BS L701 0.799 \$ 1 L702 0.799 1 \$ BLCY0072001 COIL LC-072 L009 0.739 1 \$ BLCY0074001 COIL LC-074 L006 0:739 1 \$ BLDY0087001 COIL LD-087 BF04-3*5*1 L008 0.066 1 \$ BLDY0168001 COIL LD-168 L007 1 \$ 0.449 BLEY0096001 COIL LE-096 8 1/2T L004 1 \$ 0.145 L005 1 \$ 0.145 BLEY0187001 COIL LE-187 D4.0 7T L010 1 \$ 0.165 BMKY0356001 MICROPHONE MK-356 MC951 16.790 1 \$ BPAY0243AAZ PC BOARD:VCO PA-243AA **Б701** \$ 0.515 1 BPAY0247AAZ PC BOARD:MAIN PA-247AA B001

(MODEL) UT317AT PRO-520E			
(PARTS CODE) (DESCRIPTION)		(SYMBOL) (Q'TY)	(LIST PRICE)
BPAY0249AAZ PC BOARD:LED	PA-249AA	B551 1	\$ 0.911
BQXY0250001 CRYSTAL	QX-250 10.2419M	×001 1	\$ 3.128
BRFD181014Z RESISTOR:CARBON MELF CHIP	100 1/8W J TAPING	R702 1	\$ 0.073
		R706 1	\$ 0.073
BRFD181034Z RESISTOR:CARBON MELF CHIP	1CK 1/8W J TAPING	R704 1	\$ 0.073
BRFD181534Z RESISTOR:CARBON MELF CHIP	15K 1/8W J TAPING	R707 1	\$ 0.073
BRF5183314Z RESISTOR:CARBON MELF CHIP	330 1/8W J TAPING	R708 1	\$ 0.073
BRFD183334Z RESISTOR:CARBON MELF CHIP	33K 1/8W J TAPING	R701 1	\$ 0.073
BRFD183914Z RESISTOR:CARBON MELF CHIP	390 1/8W J TAPING	R703 1	\$ 0.073
BRFD183934Z RESISTOR:CARBON MELF CHIP	39K 1/8W J TAPING	R705 1	\$ 0.073
BRFD185634Z RESISTOR:CARBON MELF CHIP	56K 1/8W J TAPING	R709 1	\$ 0.073
BRPB181014Z RESISTOR:CARBON AXIAL LEAD	100 1/8W J	R051 1	\$ 0.066
BRPB181024Z RESISTOR:CARBON AXIAL LEAD	1K 1/8W J	R036 1	\$ 0.066
		R711 1	\$ 0.066
BRPB181234Z RESISTOR:CARBON AXIAL LEAD	12K 1/8W J	R077 1	\$ 0.066
BRPB181504Z RESISTOR:CARBON AXIAL LEAD	15 1/8W J	R048 1	\$ 0.066
BRPB181514Z RESISTOR:CARBON AXIAL LEAD	150 1/8W J	R064 1	\$ 0.066
		R114 1	\$ 0.066
BRPB181534Z RESISTOR:CARBON AXIAL LEAD	15K 1/8W J	R056 1	\$ 0.066
BRPB181544Z RESISTOR:CARBON AXIAL LEAD	150K 1/8W J	R017 1	\$ 0.066
BRPB182224Z RESISTOR:CARBON AXIAL LEAD	2.2K 1/8W J	R117. 1	\$ 0.066
BRPB182734Z RESISTOR:CARBON AXIAL LEAD	27K 1/8W J	R078 1	\$ 0.066
BRPB184754Z RESISTOR:CARBON AXIAL LEAD	4.7M 1/8W J	R116 1	\$ 0.066
BRPB186814Z RESISTOR:CARBON AXIAL LEAD	680 1/8W J	R106 1	\$ 0.066
BRPB611024Z RESISTOR:CARBON AXIAL LFAD	1K 1/6W J	R554 1	\$ 0.066
		R556 1	\$ 0.066

(MODEL) UT317AT	PR0-520E				
(PARTS CODE)	(DESCRIPTION)		(SYMBOL) (Q.	TY) (L	IST PRICE)
BRPB611034Z	RESISTOR:CARBON AXIAL LEAD	10K 1/6W J	R567 1	s	0.066
BRPB612724Z	RESISTOR:CARBON AXIAL LEAD	2.7K 1/6W J	R552 1	\$	0.066
BRPB613314Z	RESISTOR:CARBON AXIAL LEAD	330 1/6W J	R551 1	s	0.066
BRPB613924Z	RESISTOR:CARBON AXIAL LEAD	3.9K 1/6W J	R 5 5 3 1	\$	0.066
BRPB614714Z	RESISTOR:CARBON AXIAL LEAD	470 1/6W J	R557 1	\$	0.066
BRPB616814Z	RESISTOR:CARBON AXIAL LEAD	680 1/6W J	R558 1	\$	0.066
			R562 1	\$	0.066
			R565 1	\$	0.066
BRSJ302794Z	RESISTOR:METAL OXIDE	2.7 3W J	R001 1	\$	0.601
BRSJ308294Z	R:METAL OXIDE	8.2 3W J	R002 1	\$	0.601
BRTY0182104	RESISTOR:SEMI-FIXED	RT-182 TT24R 100KB	VR003 1	\$	0.871
BRTY0182203	RESISTOR:SEMI-FIXED	RT-182 TT24R 20KB	VR001 1	s	0.871
BRTY0182504	RESISTOR:SEMI-FIXED	RT-182 TT24R 500KB	VR002 1	\$	0.871
BRTY0520102	RESISTOR:SEMI-FIXED	RT-520 B1K	VR004 1	\$	0.317
BRUB181014Z	RESISTOR:CARBON FORMED VERT	100 1/8W J	R005 1	s	0.066
			R011 1	. 5	0.066
			R053 1	S	0.066
			R068 1	\$	0.066
BRUB181024Z	RESISTOR:CARBON FORMED VERT	1K 1/8W J	R007 1	\$	0.066
			R093 1	\$	0.066
			R113 1	s	0.066
			R115 1	\$	0.066
BRUB181034Z	RESISTOR:CARBON FORMED VERT	10K 1/8W J	R022 1	\$	0.066
			R030 1	\$	0.066
			R061 1	\$	0.066
			R079 1	\$	0.066

87/ 1/21

(MODEL) PR0-520E UT317AT (PARTS CODE) (DESCRIPTION) (SYMBOL) (Q'TY) (LIST PRICE) BRUB181034Z RESISTOR: CARBON FORMED VERT 10K 1/8W J R083 1 \$ 0.066 R101 \$ 0.066 1 R109 0.066 1 \$ BRUB181044Z RESISTOR:CARBON FORMED VERT 100K 1/8W J R094 \$ 0.066 1 0.066 R098 \$ 1 BRUB181054Z RESISTOR: CARBON FORMED VERT 1M 1/8W J R021 0.066 \$ 1 0.066 R037 s 1 BRUB181094Z RESISTOR: CARBON FORMED VERT R067 0.066 1 1/8W J \$ 1 0.066 BRUB181224Z RESISTOR:CARBON FORMED VERT 1.2K 1/8W J R027 1 \$ 0.066 R082 BRUB181514Z RESISTOR: CARBON FORMED VERT 150 1/8W J 1 \$ BRUB181534Z RESISTOR: CARBON FORMED VERT 15K 1/8W J R059 1 \$ 0.066 R087 0.066 1 \$ BRUB181544Z RESISTOR: CARBON FORMED VERT 150K 1/8W J R018 1 \$ 0.066 BRUB181814Z RESISTOR:CARBON FORMED VERT 180 1/8W J R057 1 \$ 0.066 0.066 R058 1 \$ BRUB181824Z RESISTOR: CARBON FORMED VERT 1.8K 1/8W J R091 \$ 0.066 1 22 1/8W J R004 0.066 BRUB182204Z RESISTOR:CARBON FORMED VERT 1 \$ BRUB182214Z RESISTOR:CARBON FORMED VERT 0.066 220 1/8W J R013 1 \$ R 0 9 5 0.066 1 \$ BRUB182224Z RESISTOR: CARBON FORMED VERT 2.2K 1/8W J R029 0.066 1 \$ R044 1 \$ 0.066 R081 0.066 1 \$ 0.066 R088 1 \$ R099 1 \$ 0.066 BRUB182244Z RESISTOR:CARBON FORMED VERT 220K 1/8W J R019 1 \$ 0.066 BRUB182254Z RESISTOR:CARBON FORMED VERT 2.2M 1/8W J R025 1 \$ 0.066

(MODEL) UT317AT	PR0-5208									
(PARTS CODE)	(DESCRIPTION)						(SYMBOL)	(Q'TY)	(LIS	T PRICE)
BRUB182704Z	RESISTOR:CARBON	FORMED	VERT	27	1/8W	J	R 0 5 4	1	\$	0.066
BRUB182734Z	RESISTOR: CARBON	FORMED	VERT	27K	1/8W	J	R 0 4 2	1	\$	0.066
							R043	1	\$	0.066
							R 0 7 4	1	\$	0.066
BRUB183304Z	RESISTOR: CARBON	FORMED	VERT	33	1/8W	J	R 0 8 5	1	\$	0.066
BRUB183314Z	RESISTOR:CARBON	FORMED	VERT	330	1/8₩	J	R006	1	\$	0.066
							R038	1	\$	0.066
							R046	1	\$	0.066
BRUB183324Z	RESISTOR:CARBON	FORMED	VERT	3.3K	1/8W	J	R 0 1 4	1	\$	0.066
							R066	1	\$	0.066
BRUB183344Z	RESISTOR:CARBON	FORMED	VERT	330K	1/8W	J	R031	1	\$	0.066
							R039	1	\$	0.066
							R041	1	\$	0.066
BRUB183924Z	RESISTOR: CARBON	FORMED	VERT	3.9K	1/8W	J	R 0 9 6	· 1	\$	0.066
BRUB183934Z	RESISTOR:CARBON	FORMED	VERT	39K	1/8W	J	R092	1	\$	0.066
BRUB183944Z	RESISTOR: CARBON	FORMED	VERT	390K	1/8W	J	R 0 3 3	1	\$	0.066
							R112	1	\$	0.066
BRUB184714Z	RESISTOR: CARBON	FORMED	VERT	470	1/8W	J	R108	1	\$	0.066
BRUB184724Z	RESISTOR: CARBON	FORMED	VERT	4.7K	1/8W	J	R 0 7 1	1	\$	0.066
BRUB184734Z	RESISTOR: CARBON	FORMED	VERT	47K	1/8W	J	R 0 3 2	1	\$	0.066
							R097	1	\$	0.066
BRUB184754Z	RESISTOR:CARBON	FORMED	VERT	4.7M	1/8w	J	R 0 2 3	1	\$	0.066
							R110	1	s	0.066
BRUB185614Z	RESISTOR: CARBON	FORMED	VERT	560	1/8w	J	R G 1 5	1	\$	0.066
							R 0 6 5	1	\$	0.066
BRUE185624Z	RESISTOR : CARBON	FORMED	VERT	5.6K	1/84	J	R 0 3 5	1	\$	0.066

87/ 1/21		UCA P	ARTS	PRICE	LIST	(PPL0458)			PAGE	12
(MODEL) UT317AT	PR0-520E									
(PARTS CODE)	(DESCRIPTION)						(SYMBOL)	(Q • TY)	(LI	ST PRICE)
BRUE185624Z	RESISTOR:CARBON	FORMED	VERT	5.6K	1/8W	J	R 0 6 2	1 -	\$	0.066
							R072	1	\$	0.066
							R073	1	\$	0.066
							R086	1	\$	0.066
							R111	1	\$	0.066
BRUE185634Z	RESISTOR:CARBON	FORMED	VERT	56K	1/8W	J	R076	1	\$	0.066
BRUB185644Z	RESISTOR: CARBON	FORMED	VERT	560K	1/8w	J	R034	1	· \$	0.066
BRUB185694Z	RESISTOR: CARBON	FORMED	VERT	5.6	1/8W	J	R049	1	\$	0.066
BRUB186814Z	RESISTOR:CARBON	FCRMED	VERT	680	1/8W	J	R045	1	\$	0.066
							R102	1	\$	0.066
							R103	1	\$	0.066
							R104	1	\$	0.066
							R105	1	\$	0.066
							R107	1	·\$	0.066
BRUB186824Z	RESISTOR:CARBON	FORMED	VERT	6.8K	1/8W	J	R028	1	\$	0.066
							R 0 7 5	1	\$	0.066
							R 084	1	\$	0.066
BRUB186834Z	RESISTOR: CARBON	FORMED	VERT	68K	1/8W	J	R026	1	\$	0.066
BRUB188224Z	RESISTOR: CARBON	FORMED	VERT	8.2K	1/8W	J	R055	1	\$	0.066
							R089	1	\$	0.066
BRUB188234Z	RESISTOR:CARBON	FORMED	VERT	8 2 K	1/8W	L	R069	1	\$	0.066
BRUB 61 22 24 Z	RESISTOR:CARBON	FORMED	VERT	2.2K	1/6₩	J	R 5 5 5	1	\$	0.066
BRUB612734Z	RESISTOR: CARBON	FORMED	VERT	27K	1/6W	J	R003	1	\$	0.066
BRUE616814Z	RESISTOR : CARBON	FORMED	VERT	680	1/6₩	J	R 5 5 9	1	\$	0.066
							R561	1	\$	0.066
							R 5 6 3	1	\$	0.066

87/ 1/21

(MODEL) **UT317AT** PR0-520E (PARTS CODE) (DESCRIPTION) (SYMBOL) (Q'TY) (LIST PRICE) BRUB616814Z RESISTOR: CARBON FORMED VERT 680 1/6W J R564 0.066 1. \$ 1 0.066 R566 \$ BRVY0650001 RESISTOR:VARIABLE RV-650 VB12L B50K VR502 2.270 1 \$ BRVY0651001 RESISTOR:CEMENT RV-651 RK1211111014-50KA VR501 4.547 1 \$ BRVY0652001 RESISTOR:VARIABLE RV-652 VB12L B1K VR503 2.270 1 \$ BSPY0154001 SPEAKER SP-154 SP501 1 \$ 3.874 BSRY0303001 SWITCH:ROTARY SR-303 US₩-0377 \$501 1 \$ 12.283 BSWY0557001 SWITCH:SLIDE SW-557 SSFYP22-14.58 \$ 5 5 3 [.] 1 \$ 0.818 \$ 5 5 4 0.818 1 \$ S 5 5 6 1 \$ 0.818 BTFY0083001 TRANSFORMER: AF CHOKE TF-083 T002 1 \$ 1.201 BTFY0215001 TRANSFORMER:OUTPUT TF-215 T001 1 \$ 3.538 BWZY0246001 CORD:DC WA951 WZ-246 1500MM 1 \$ 3.293 BYDY0019003 BUSHING: TRANSISTOR YD-019 83120-11-A YI501 0.092 1 \$ BYDY0058001 HEAT SINK YD-058 TES5 YI001 0.000 1 \$ BYYY0027001 INSULATION SHEET YY-027 YI502 0.561 1 \$ BYYY0052001 JUMPER WIRE YY-052 5.0MM JP003 1 \$ 0.020 JPC12 1 \$ 0.020 JP028 0.020 1 \$ JP038 0.020 1 \$ JP553 \$ 0.020 1 JP557 0.020 1 \$ JP701 0.020 1 \$ BYYY0052002 JUMPER WIRE YY-052 7.5MM JP002 \$ 0.026 1 JP005 1 \$ 0.026 JP006 \$ 0.026 1

(MODEL) UT317AT	PR0-520E						
(PARTS CODE) (DESCRI	PTION)			(SYMBOL)	(Q*TY)	(LIS	F PRICE)
BYYY0052002 JUMPER	WIRE	YY-052	7.5MM	JP013	- 1	\$	0.026
				JP014	1	\$	0.026
				JP020	1	\$	0.026
				J P O 2 2	1	\$	0.026
				JP025	1	\$	0.026
				JP030	1	\$	0.026
				J P 5 5 2	1	\$	0.026
				J P 5 5 4	1	\$	0.026
				1 P S S S	1	\$	0.026
BYYY0052003 JUMPER	WIRE	YY-05 2	10.0MM	JP011	1	\$	0.026
				JP021	1	\$	0.026
				JP029	1	\$	0.026
				JP551	1	\$	0.026
				JP702	1	\$	0.026
BYYY0052004 JUMPER	WIRE	YY-052	12.5MM	JP001	1	\$	0.026
				JP004	1	\$	0.026
				JP015	1	\$	0.026
				JP017	1	\$	0.026
				JP026	1	\$	0.026
				JP034	1	\$	0.026
				JP039	1	\$	0.026
BYYY0052005 JUMPER	WIRE	YY- 052	15.0MM	J P008	1	\$	0.026
				JP016	1	\$	0.026
				JP018	1	\$	0.026
				JP024	1	\$	0.026
				JP037	1	\$	0.026

87/ 1/21 UCA PARTS PRICE LIST (PPL0458) PAGE 14

87/ 1/21		UCA PARTS	PRICE	LIST	(PPL0459)			PAGE	15
(MODEL) UT317AT	PR0-520E								
(PARTS CODE)	(DESCRIPTION)					(SYMBOL)	(Q • TY)	(LI	ST PRICE)
BYYY0052006	JUMPER WIRE		YY-05	52 17.5	5 M M	JP009	1	\$	0.026
						JP010	1	\$	0.026
						JP019	1	\$	0.026
						JP027	1	\$	0.026
						JP035	1	\$	0.026
						JP556	1	\$	0.026
						JP703	1	\$	0.026
BYYY0052007	JUMPER WIRE		YY-0	52 20.0	D M M	JP007 '	1	\$	0.026
						JP032	1	\$	0.026
						JP036	1	\$	0.026
BYYY0052009	JUMPER WIRE		YY-0:	52 25.0	DMM	JP031	1	\$	0.026
CUAB008021Z	WIRE		UL 1	007 #24	4 5- 80- 3	RED	1	\$	0.086
CUAC008021Z	WIRE		UL 1	007 #24	4 5- 80- 3	ORG	1	\$	0.086
CUAH015021Z	WIRE		UL 1	007 #24	4 5-150- 3	GRY	1	\$	0.119
							1	\$	0.119
CUAJ003041Z	WIRE		UL 1	007 #2	4 10- 30- 3	мнт	1	\$	0.073
CUAK011044Z	WIRE		UL 1	007 #24	4 10-110-10	BLK	1	\$	0.092
CUAVO050112	WIRE		UL 1	007 #2	4 3- 50- 3	PNK	1	\$	0.073
CUKC004044Z	WIRE		UL 1	007 #28	8 10- 40-10	ORG	1	\$	0.073
G C M F 2 1 8 7 0 7 Z	PANEL: FRONT		ABS	DARK G	RAY PAINT		1	S	3.346
GHDL418694Z	HOLDER:LED		AB S	NATURAL	L		1	\$	0.317
G M S C 4 O 5 7 3 6 Z	SCREW: MOUNTING		AB S	INST C	LR BLACK		2	\$	0.356
G NB C 4 1 8 6 9 5 Z	KNOB: CHANNEL		ABS,	BLACK			1	\$	0.370
G N B Y 4 1 8 5 9 3 A	KNOB		ABS.	BLACK			3	\$	0.284
HBCT418696Z	MOUNTING BRACKET		SPCC	·1.2T/	MFZN3		1	\$	0.000

HCMB318697Z COVER:BOTTOM . VINYTOP Ex0.75T BLACK 1 \$ 0.000

87/ 1/21

UTUD01317AZ OWNER'S MANUAL

0.000

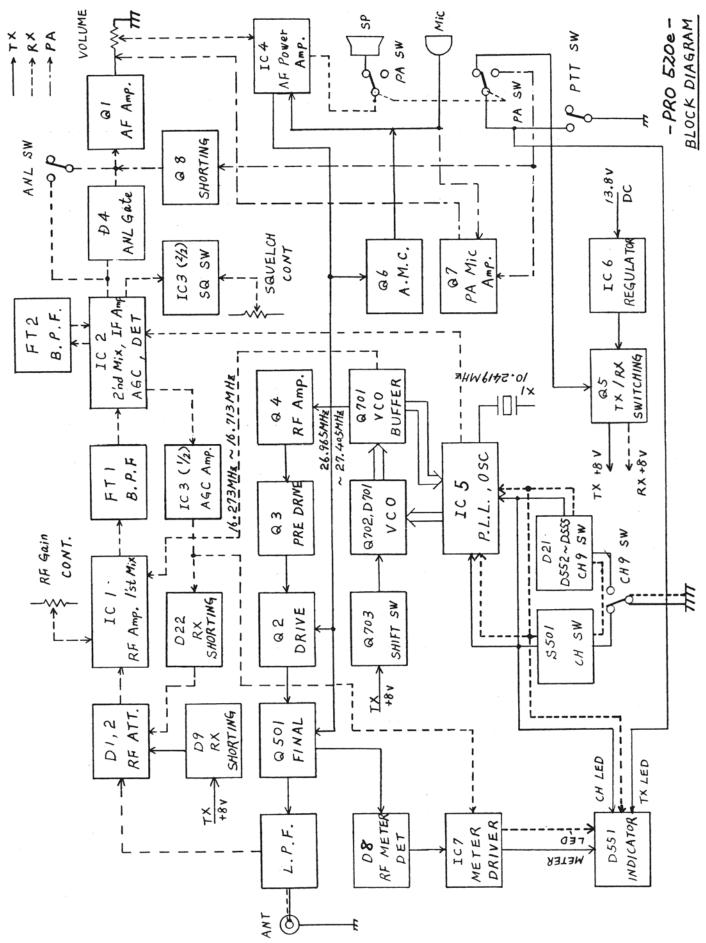
\$

1

(MODEL) PRO-52ÛE UT317AT (PARTS CODE) (DESCRIPTION) (SYMBOL) (Q'TY) (LIST PRICE) HCMT318698Z COVER: TOP VINYTOP E.O.75T.BLACK 0.000 1 \$ HCSY218708A CHASSIS SECC 1.OT NONOIL 0.000 1 \$ HHDC418700A HOLDER: JACK SECC.1.OT 0.231 1 \$ HHSK418924Z HEAT:SINK C5191R.0.5T 1 \$ 0.568 HMHG402919Z HANGER:MICROPHONE SPCC,1.OT,NI 0.356 1 \$ HSDP403852Z SHIELD PLATE SPTE,0.3T,NON OIL 1 \$ 0.119 JDPF418709Z ID PLATE:FCC ALP 0.5T 1 \$ 0.422 KDPT418702Z PLATE:WINDOW POLYCARBO, 0.5T, BLACK 1 \$ 0.515 PLBC419000Z LABEL:WARNING.DC CORD PAPER . PRINT 0.053 1 \$ PLBZ412255B LABEL:CHECK PAPER PRINT 1 \$ 0.053 RUTC418435Z WOOL-COATED PAPER:WOOL TACK WOOL PAPER - 100 + 5 + 0.3T 0.026 4 \$ M3X5 NI SSCW133005N SCREW:FLAT HD + 2 \$ 0.020 SSCW193008B SCREW:BIND HD + M3X8 BNI 4 \$ 0.020 SSCW193008N SCREW:BIND HD + M3X8 NI 1 s 0.020 SSCW293508N SCREW: TAPPING ROUND HD + 0.066 D3-5X8 NI 2 \$ SSCW295010N SCREW: TAPPING ROUND HD + D5X10 NI 2 0.112 \$ SSCW343006B SCREW: TAPTIGHT BIND HD + M3X6 BNI 8 \$ 0.066 SSCW343006N SCREW: TAPTIGHT BIND HD + M3X6 NI 4 \$ 0.066 SSCW430030N HEX NUT M3.0 NI 0.046 1 \$ SSCW480030N NUT:FLANGE M3 NI 4 \$ 0.073 SSCW530035N WASHER:LOCK D3.5 NI 0.026 2 \$ SSCW540050N WASHER:STAR D5 NI 0.046 2 \$ SSCW803006N SCREW:P TIGHT BIND HD + D3X6 NI \$ 0.066 1 0.389 TSTD0200003 SPRING PLATE:KNOB D6.02XL9.53 4 \$ TSTD0213232 RIVET:AL/ID PLATE D3.2X3.2 2 0.158 \$

**

(MODEL) UT317AT	PR0-52GE					
(PARTS CODE) (DESCRIPTION)		(SYMBOL)	(Q • TY)	(LIS	T PRICE)
U T Y Y 58000Z A	FCC RULES RART 95	**		1	\$	0.389
VNYL1081800	VINYL BAG	80×180×0.05T		1	s	0.026
VNYL1122800	VINYL BAG	120×280×0.05T		1	\$	0.086
VNYL2323765	VINYL	320×370×650×0.07		0.08333	\$	1.406
VNYL3101200	VINYL BAG	100×120×0.1T		1	\$	0.053
VNYL3173200	VINYL BAG	170×320×0.1T		1	\$	0.139
WBXC318710Z	DISPLAY BOX	**		1	\$	0.000
w C T Z 4 1 8 7 1 1 Z	SHIPPING CARTON BOX	**		0.08333	\$	0.000
WSFC318705Z	STYROFOAM PAD	**		2	\$	0.851
WSLV418706Z	SLEEVE	**		1	\$	0.403
		TOTAL >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>			1	94.863


7. FREQUENCY CHART

Frequency Chart of Fvco and Divide Ratio N

Antenna Frequency (MHz)	Channel Number	For Trasmit (R/T=H) Devide Ratio (N)	VCO Frequency (MHz)	For Receive (R/T=L) Divide Ratio (N)	VCO Frequency (MHz)
26.965 26.975 26.985 27.005 27.015 27.025 27.035 27.055 27.065 27.085 27.105 27.105 27.115 27.125 27.155 27.155 27.165 27.205 27.215 27.225 27.233 27.245 27.265 27.275 27.305 27.315 27.325 27.335 27.345 27.345 27.375 27.385 27.395 27.395 27.405	$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\32\\4\\25\\26\\27\\28\\29\\30\\31\\32\\33\\4\\36\\37\\38\\39\\40\end{array}$	2696 2697 2698 2700 2701 2702 2703 2705 2706 2707 2708 2710 2711 2712 2713 2715 2716 2717 2718 2720 2721 2722 2725 2725 2723 2724 2726 2727 2728 2729 2730 2731 2732 2733 2734 2736 2737 2738 2739 2740	26.965 26.975 26.985 27.005 27.015 27.025 27.055 27.055 27.085 27.105 27.105 27.105 27.125 27.125 27.135 27.135 27.135 27.255 27.215 27.225 27.225 27.225 27.225 27.255 27.255 27.255 27.255 27.255 27.255 27.255 27.265 27.265 27.275 27.265 27.275 27.285 27.265 27.275 27.285 27.275 27.285 27.275 27.305 27.315 27.315 27.315 27.325 27.335 27.345 27.375 27.385 27.395 27.395 27.395 27.405	1627 1628 1629 1631 1632 1633 1634 1636 1637 1638 1639 1641 1642 1643 1644 1646	$\begin{array}{c} 16.273\\ 16.283\\ 16.293\\ 16.313\\ 16.323\\ 16.333\\ 16.343\\ 16.363\\ 16.363\\ 16.373\\ 16.383\\ 16.393\\ 16.413\\ 16.423\\ 16.423\\ 16.443\\ 16.443\\ 16.443\\ 16.443\\ 16.443\\ 16.453\\ 16.553\\ 16.553\\ 16.553\\ 16.553\\ 16.553\\ 16.553\\ 16.553\\ 16.553\\ 16.563\\ 16.563\\ 16.633\\ 16.603\\ 16.613\\ 16.623\\ 16.633\\ 16.633\\ 16.633\\ 16.663\\ 16.673\\ 16.633\\ 16.673\\ 16.683\\ 16.693\\ 16.703\\ 16.713\end{array}$

8. TECHNICAL DRAWINGS

BLOCK DIAGRAM

UT317A/PA247AA::52:1

Q1	25094540
02	25C2086D
Q3	25C941TH(0)
04	25C1675L
Q5	25A733A-PB
96	25094540
07	25C945AQ
Q8	25C945AQ

L1	LA279	
L2	LA138	
L3	LA204	
L4	LE096	
L5	LE096	
L6	LC074	
L7	LD168	
LB	LD087	
L9	LC072	
L10	LE187	
L11	LA204	
101	LA1185	
102	TDA1220B	
103	M5223L	
104	TDA1905	
105	SH5124A	
106	L7808CV	
107	LB1423	

10058

¥]1

D2	151555
D3	151555
D4	151555
D5	151555
D6	151555
D7	1N4003
D8	151555
D9	151555
D10	HZ6C1
D11	151555
D12	151555
D13	151555
D14	151555
D15	151555
D16	151555
D17	151555
D18	1N4003
D19	151555
D20	151555
D21	151555
D22	151555
D23	151555
D24	151555
D25	151555
D26	INGOAM
FTI	FL048
FT2	FL221
13	JK089
14	JK089

D1 151555

TI	TF215	٦
T2	TF083	1
]
VR1	20KB	٦
VR2	500KB	┥
VR3	100KB	1
VR4	1KB	1
]
¥1	07250	1

10.2419MHz

	JP1	12.5
	JP2	7.5
	JP3	5
	JP4	12.5
	JP5	7.5
	JP6	7.5
	JP7	20
	JP8	15
	JP9	17.5
	JP10	17.5
	JP11	10
	JP12	5
	JP13	7.5
1	JP14	7.5
•	JP15	12.5
	JP16	15
	JP17	12.5
	JP18	15
	JP19	17.5
	JP20	7.5
	JP21	10
	JP22	7.5
	JP24	15
	JP25	7.5
	JP26	12.5
	JP27	17.5
	JP28	5
	JP29	10
	JP30	7.5
	JP31	25
	JP32	20
	JP33	10
	JP34	12.5
	JP35	17.5
	JP36	20
	JP37	15
	JP38	5
	JP39	12.5

R1 R2

R3

C1	18P/UJ
C2	0.001/YD
C 3	0.0047
C4	0.047/ZF
C5	0.01
C6	0.001/YD
٢٦	82P/UJ
C8	0.0047
69	0.01
C11	0.047/SR
C12	50¥4.7
C13	0.001/YD
C14	10¥47
C16	10747
C17	0.001/YB
C18	50V0.22
C19	0.01/SR
C21	50V1
C22	0.001/YB
C23	0.047/SR
C24	0.047/SR
C25	0.022/SR
C26 -	5044.7
C27	0.0082/SR
C28	50V4 7
C31	0.0047
C 3 2	50¥2.2
C 3 3	220 P/CH
C34	33P/CH
C 35	220P/CH
C 36	330P/UJ
C 37	50V1
C40	2P/CK
C41	220P/UJ
C42	0.001/YD
C43	0.0047
C44	0.01/YD
C45	470P/UJ
146	0.01

C46

C48

0.01 0.001/YD 0.001/YB

C51	257470	
C52	25V1000 C-095	
C53	10747	
C54	0.1/SR	
C55	50V2.2	
C56	50V1	
C57	0.01/SR	
C58	0.047/SR	
C59	0.1/SR	
C60	0.0047	
C61	50V2.2	
C62	0.01/SR	
C63	50Y2.2	
C64	50¥2.2	
C65	12P/UJ	
C66	10V220	
C67	0.047/ZF	
C68	56P/CH	
C69	560P	
C70	50Y4.7	
C71	10447	
C72	50V0.47	
C73	16V10	
C74	0.1/SR	
C75	10V22	
C76	10747	
677	10V22	
C78	0.022/SR	
C79	0.022/SR	
C81	0.047/SR	
C82	10V100	
C83	0.01/SR	
C84	0.001/YD	
C85	0.001/YD	
C86	0.001/YD	
C87	16V10	
683	0.01	
C89	0.047/SR	
C 90	0.001/YD	
C92	0.047/SR	
C94	50V1	
C 95	0.0047/YD	
C 96	0.01/YD	

C97	0.0047/YD
C101	33 P/UJ
C103	0.001/YD
C104	0.0047

R4	22	R57
R5	100	R58
R6	330	R59
R7	11	R61
		R62
R11	100	R64
R13	220	R65
R14	3.3K	R66
R15	560	R67
R17	150K	R68
R18	150K *	R69
R19	220K	R71
R21	111	R72
R22	10K	R73
R23	4.7H	R74
R25	2.2M	R75
R26	68K	R76
R27	1.2K	R77
R28	6.8K	R78
R29	2.2K	R79
R30	10K	R81
R31	330K	R82
R32	47K	R83
R33	390K	R84
R34	560K	R85
R35	5.6K	R86
R36	11	R87
R37	1H	R88
R 38	330	R89
R39	330K	R91
R41	330K	R92
R42	27K	R93
R43	27K	R94
R44	2.2K	R95
R45	680	R96
R46	330	R97
R48	15	R98
R49	5.6	R99
R51	100	R101
R53	100	R102

2.7 3W 8.2 3W 27K 1/6W

R54	27	6
R55	8.2K	F
R56	15K	F
R57	180	
R58	180	-
R59	15K	
R61	10K	F
R62	5.6K	F
R64	150	F
R65	560	F
R66	3.3K	F
R67	1	F
R68	100	F
R69	82K	
R71	4.7K	
R72	5.6K	
R73	5.6K	
R74	27K	
R75	6.8K	
R76	56K	
R77	12K	
R78	27K	
R79	10K	
R81	2.2K	
R82	150	
R83	10K	
R84	6.8K	
R85	33	
R86	5.6K	
R87	15K	
R88	2.2K	
R89	8.2K	
R91	1.8K	
R92	39K	
R93	1K	
R94	100K	
0.05		

220 3.9K 47K

100K

2.2K 10K 680

R103	680
R104	680
R105	680
R106	680
R107	680
R108	470
R109	10K
R110	4.7H
R111	5.6K
R112	390K
R113	1K
R114	150
R115	1K

NOTES: 1. RESISTANCE VALUES ARE SHOWN IN OHMS UNLESS 0THERVISE NOTED. (K-KILO OHM. M-MEG OHMI) 2. RESISTOR WATLAGES ARE I/MOW UNLESS OTHERVISE NOTED. 3. CAPACITANCE VALUES ARE INDICATED IN MICRO FARADS UMLESS OTHERWISE NOTED.(P-MICRO-MICRO FARAD) 4. ALL CAPACITORS TEMPERATURE CHARACTERISTICS ARE SL ILESS THAN 1000PF1 OR YF (MORE THAN 1000PF1 UNLESS OTHERWISE NOTED.

DESIGN.81	DRAWN.81	UNIDEN NO.	MODEL NO.
\$4.11/3	61.11.10	UT-317A	PR0520e
King and	TANAKA	TITLE MAIN PO	8
CHECK.81	APPRO.81	PARTS ASSEMBL	Y TOP VIEW
		E22-6	CEO MARK
1997 - 19		EZZ-0	052
		UN	IDEN CORP

0.0047/7	Ш	ш	2	
	0.0047/YF	0.0047/YF		

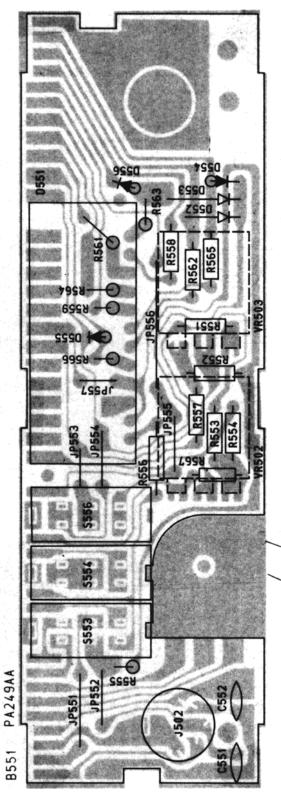
										1
IK	470	680	680	680	680	680	680	680	680	10K
R556	R557	R558	R559	R561	R562	R563	R564	R565	R566	R567

2.7K 3.9K

R552 R551

0EE

2.2K


¥

R553 R554 R555

			,					
10	7.5	5	7.5	7.5	17.5	5		
JP551	JP552	JP553	JP554	JP555	JP556	JP557		

SW557	SW557	SW557	
5553	S554	S556	

RV650	RV652		JK374	
VR502	VR503		J502	

RESISTANCE VALUES ARE SHOWN IN OHMS UNLESS OTHERWISE NOTED. (K-KILO OHM. M-MEG OHM) RESISTOR WATTAGES ARE 1/6W UNLESS OTHERWISE NOTED. CAPACITANCE VALUES ARE INDICATED IN MICRO FARADS UNLESS OTHERWISE NOTED.(P-MICRO-MICRO FARAD) à ÷ ė NOTES:

> HOLDER LED M4 - 18694 PCB b 0551 Т Т

Т E

UT317A/PA249AA::52:1

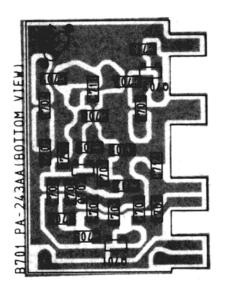
UNIDEN CORP E24-6654

REV.

TITLE FRONT PCB PARTS ASSEMBLY TOP VIEW

FUMIKO.E

APPRO.BY

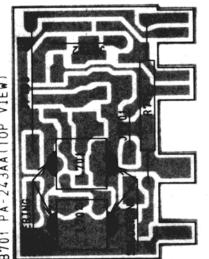

PR0 520e MODEL NO.

UT-317A UNIDEN NO.

61.11.7

DRAWN.BY

DESIGN.BY 86/.11.13 Canarya CHECK .BY



: 1		- 1								·					_	<u> </u>	
R701	R702	R703	R704	R705	R706	R707	R708	R709						D701			
													-				
39P/SL	0 01/Y	0.01/Y	0.01/Y	39P/SL	15P/CH	47P/SL	100P/B	330P/B	39P/SL	68P/SL	0.01/Y	0.01/Y		25C2814F5	25C2814F5	25C2814F5	
C701	C702	C703	C704	C705	C706	C707	C708	C709	C711	C712	C713	C714		0701	0702	0703	

R701	33K
R702	100
R703	390
R704	10K
R705	39K
R706	100
R707	15K
R708	330
R709	56K

1SV73EB			
D701			

SHIELD PLATE M4-03852

SOLDERING

B701 PA-243AA (BOTTOM VIEW)

.

0

1		5		
S	10	17		-
10	02	60		
P7	JP702	197		

¥			
R711			

		T	
LB537	LB537		
L701	L702		

NOTES: I. RESISTANCE VALUES ARE SHOWN IN OHMS UNLESS OTHERWISE NOTED: (K-KJLO OHM. M-MEG OHM) 2. RESISTOR WATTAGES ARE 1/8W UNLESS OTHERWISE NOTED. 3. CAPACITANCE VALUES ARE INDICATED IN MICRO FARADS UNLESS OTHERWISE NOTED.(P-MICRO-MICRO FARAD)

DESIGN BY	DESIGN BY DRAWN BY	UNIDEN NO.	MODEL NO.
84/11/3 61.11.4	61.11.4	UT-317A	PR0520e
Kong	TANAKA TANAKA	TITLE VCO PCB	_
CHECK BY	APPRO.BY	PARTS ASSEMBLY	
			202
		'n	UNIDEN CORP