This Information Is Provided By

CBTricks.com

Sharp CB-4670 Service Manual

Liability of damages to any equipment is the sole responsibility of the user! Downloading, viewing, or using any information provided on these pages automatically accepts the user to the terms of this agreement!

Modifications are provided for information purposes only!

Supporters of CBTricks.com paid for the hosting so you would have this file.

CBTricks.com is a non-commercial personal website was created to help promote the exchange of service, modification, technically oriented information, and historical information aimed at the Citizens Band, GMRS (CB "A" Band), MURS, Amateur Radios and RF Amps.

CBTricks.com is not sponsored by or connected to any Retailer, Radio, Antenna Manufacturer or Amp Manufacturer, or affiliated with any site links shown in the links database. The use of product or company names on my web site is not endorsement of that product or company.

The site is supported with donations from users, friends and selling of the Site Supporters DVD's to cover some of the costs of having this website on the Internet instead of relying on banner ads, pop-up ads, commercial links, etc. Thus I do not accept advertising banners or pop-up/pop-under advertising or other marketing/sales links or gimmicks on my website.

ALL the money from donations is used for CBTricks.com I didn't do all the work to make money (I have a day job). This work was not done for someone else to make money also, for example the ebay CD sellers.

All Trademarks, Logos, and Brand Names are the property of their respective owners. This information is not provided by, or affiliated in any way with any radio or antenna Manufacturers.

Thank you for any support you can give.

For information on how to Support CBTricks.com http://www.cbtricks.com/support/

SERVICE MANUAL &

'WARNING'

It is unlawful for the user to make any replacement or substitution of parts, adjustments or to service the transmitter by any one other than a person holding a commercial 1st or 2nd class radio operator's license. Any change in the circuitry that would change or violate the technical regulations or type acceptance is prohibited.

> P.L.L. SYNTHESIZED 40 CHANNEL CITIZENS BAND TRANSCEIVER

> > MODEL CB-4670 CX-1 (Optional **Extension Cord)**

INDEX TO CONTENTS

SPECIFICATIONS	RECEIVER ALIGNMENT
PARTS LAYOUT 3	TRANSMITTER AND MODULATOR
GENERAL DESCRIPTION 4	ALIGNMENT
DESCRIPTION OF PHASE-LOCKED-LOOP (P.L.L.)	SIGNAL/RF POWER METER ADJUSTMENT 13
CIRCUIT	EQUIVALENT CIRCUIT OF INTEGRATED
What is P.L.L. ? 4	CIRCUIT
Frequency Synthesizer 4	CAUTIONS ON HANDLING MOS IC 20
Frequency Determining 5	TROUBLE SHOOTING GUIDE
FREQUENCY OF SYNTHESIS CHART 6	CHANNEL INDICATOR (LED901)
BLOCK DIAGRAM $7 \sim 8$	RESISTOR ARRAY
ALIGNMENT POINTS	SEMICONDUCTORS BASING
ALIGNMENT	WIRING SIDE OF P.W. BOARD
EQUIPMENT REQUIRED 10	SCHEMATIC DIAGRAM
PHASE LOCKED LOOP (P.L.L.) CIRCUIT	HOW TO SET THE TRANSISTORS AND IC 39
ALIGNMENT10	REPLACEMENT PARTS LIST
	10

SHARP ELECTRONICS CORPORATION

Executive Office:									
10 Keystone Place,	Paramus,	New Jersey	07652	(201) 265-5600					
Regional Offices & Distribution Centers:									
10 Keystone Place	Paramus,	New Jersey	07652	(201) 265-5600					
21580 Wilmington Ave.,	Long Beach,	Calif.	90810	(213) 830-4470					
U.S. Subsid	diary of Sharp Co	rporation, Osak	a, Japan						
Parts Centers:									
P.O. Box 664	Paramus,	New Jersey	07652	(201) 265-5600					
P.O. Box 20394	Long Beach,	Calif.	90801	(213) 830-4470					

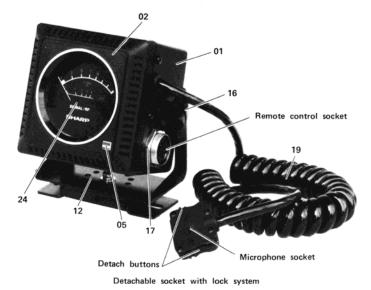
SPECIFICATIONS

Transmitter section	Specificary 2 1/9#
RF power output 4W (maximum)	Speaker
Frequency range 27MHz Citizens Band	Semiconductor 5-ICs
Channels 40 chs. P.L.L. (Phase Locked	24-Transistors
Loop) circuit Synthesizer	31-Diodes
Type of crystal HC-18U	3-LED
Tolerance	2-Crystal
10.240MHz ± 0.003%	Dimensions Main unit
Transmitter modulation100% (maximum)	Width: 6-11/16"
Modulation limiter Yields high average modulation	Height: 2-1/2"
at average voice levels	Depth: 7-1/4"
Antenna matching 50 ohms Un-balanced	Speaker unit
Carrier deviation Not greater than ± 800Hz	Width: 3-15/16"
nominal on (exceeds F.C.C.,	Height: 3-15/16"
requirements)	Depth: 3-1/4"
Harmonic suppression Exceeds 60dB	Microphone unit
	Width: 2-5/8"
Receiver section	Height: 4-1/2"
Audio power output 3.5 Watts maximum power out-	Depth: 7/8"
put	Weight Main unit : 3.9 lbs.
Sensitivity $0.5\mu V/m$ for $10dB S + N/N$	Speaker unit: 1.5 lbs
ratio at 30% at 1000Hz modu-	Microphone unit: 0.3 lbs.
lation	Pocket size Remote Control Microphone Unit
Channels 40 chs. P.L.L. (Phase Locked	(Microphone: Dynamic microphone (500 ohm)
Loop) circuit Synthesizer	Off-Volume control
Type of crystal HC-18U	Squelch control
$11.150MHz \dots \pm 0.003\%$	Press-to-talk switch
Selectivity 6dB down at ± 3kHz;	Channel selection switch: UP and DOWN type
$60dB$ down at $\pm 10kHz$.	Emergency channel (CH-9) priority switch, with
Intermediate frequency1st-IF: 10.695MHz,	flashing the channel indicator.
2nd-IF: 455kHz	ANL (Automatic Noise Limiter) switch
Circuit type Dual conversion superhetero-	Large scale LED channel indicator: 1-ch. ~ 40-ch.
dyne: Phase Locked Loop	RX indicator: LED (green)
(P.L.L.) frequency synthesizer	TX indicator : LED (red)
provides 40 transmit and receive	,
channels.	Specifications are subject to change without prior notice,
Auxiliary circuits Automatic noise limiter (ANL),	within FCC rules and regulations.
Auxiliary circuits Automatic noise limiter (ANL),	within FCC rules and regulations.

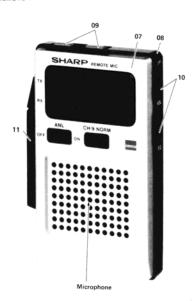
General

Power source..... DC 12.0V Nominal

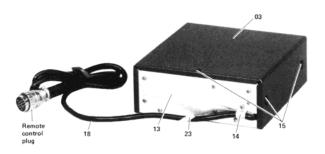
negative or positive ground

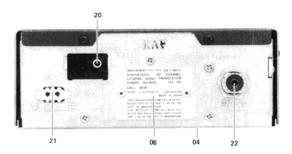

Antenna 50 ohm external antenna for car

or base operation


Variable squelch

PARTS LAYOUT


SPEAKER/SIGNAL-RF POWER METER UNIT


REMOTE MICROPHONE UNIT

MAIN UNIT (FRONT)

MAIN UNIT (REAR)

- (01) Cabinet, Speaker Side (GCABA1465AFSA)
- ©2 Cabinet, Signal/RF Power Meter Side (GCABB1465AFSA)
- 03 Cabinet, Main Unit, Black (GCABA3464AFSA)
- (04) Cabinet, Main Unit, Silver (GCABB3464AFFW)
- 05) Emblem "SHARP" (HINDM1080AFSB)
- 06 Indication Plate, Spec. (HINDM1183AFZZ)
- (07) Cabinet, Front, Microphone Unit (HPNLH0008AAZZ)
- 08 Cabinet, Rear, Microphone Unit (HPNLH0010AAZZ)
- (109) Up and Down (Channel Selector Switch) Knob (JKNBZ0001AAZZ)
- (10) Off-On Switch/Volume Control Knob (JKNBZ0002AAZZ) Squelch Control Knob (JKNBZ0002AAZZ)
- (11) Press-to-Talk Switch Knob (JKNBZ0003AAZZ)
- (12) Mounting Bracket Assembly, Speaker Unit (LBRC-0053AFSA)

- (13) Chassis, Front, Main Unit (LCHSS0126AFFW)
- (14) Holder, Remote Control Cable and Memory Cord (LHLDW3057AFFW)
- (15) Screw, Cabinet, Main Unit (LX-BZ0237AFFB)
- 16 Moulding Screw, $5\phi \times 15$ mm (LX-BZ0248AFZZ)
- 17) Nut, Remote Control Socket (24φ) (LX-NZ0123AFFN)
- (8) Remote Control Cable with Plug and Sockets Assembly (QCNW-0258AFZZ)
- (19) Microphone Cable with Sockets Assembly (QCNW-0255AFZZ)
- 20 Jack, External Speaker, J101 (QJAKA0052AFZZ)
- 21) Plug, Power Supply, PG601 (QSOCZ2454AFZZ)
- (22) Socket, Antenna (50 ohms), SO401 (QSOCZ2470AFZZ)
- Memory Cord with Socket, SO701 (QCNW-0254AFZZ)
- 24 Meter, Signal/RF Power, ME801 (RMTRE0068AFZZ)

Figure 1 PARTS LAYOUT

GENERAL DESCRIPTION (Refer to Figure 3)

RECEIVER SECTION

An input signal sent from the antenna is applied to the 1st-mixer (transistor Q2) via the RF amplifier (transistor Q1). Meanwhile, an oscillator signal delivered from the P.L.L. synthesizer is applied to the base of the transistor Q2 (1st-mixer) via the buffer circuit (transistor Q202). In this stage the above-mentioned input signal is converted to 1st-IF signal of 10.695 MHz.

This 1st-IF (10.695MHz) signal is supplied to the base of the transistor Q3 (2nd-mixer) through the transformers T3 and T4. Also to this transistor Q3 is supplied an oscillator signal (11.150MHz) from the transistor Q6, in which the signal is converted to 2nd-IF signal of 455kHz. The 2nd-IF (455kHz) signal is amplified by the 2nd-IF amplifier (transistors Q4 and Q5) and detected by the diode D2.

The output signal thus detected is applied to the terminal 6 of the integrated circuit IC-101 through the volume control (R925), amplified by the driver circuit and audio power amplifier circuit inside the IC-101 and finally applied to the speaker via the transformer T101.

TRANSMITTER SECTION

An audio signal sent from the microphone is applied to the terminal 6 of the integrated circuit IC101 so that it be audio-amplified and then applied to the final-stage transistor Q304 and drive-stage transistor Q303 via the transformer T101. Meanwhile, a carrier signal synthesized by the P.L.L. synthesizer circuit is amplified-by the 27MHz amplifier (transistors Q301 and Q302) and applied to the final-stage transistor Q304 through the drive-stage transistor Q303, in which it is modulated together with the aforesaid audio signal and finally transmitted through the antenna.

DESCRIPTION OF PHASE-LOCKED-LOOP (P.L.L.) CIRCUIT (Refer to Figure 2)

1) What is P.L.L.?

P.L.L. is abbreviation of Phase-Locked-Loop which synchronizes with frequency and phase of the stable standard input (crystal oscillation) given from the outside, namely working not only as automatic frequency control but also as automatic phase control.

The P.L.L. is now used to realize a synthesizer. Consisting of one crystal, the synthesizer serves as an oscillator to oscillate step by step (5kHz) in the receiver section range of 16.270MHz to 16.710MHz and the transmitter section range of 16.725 MHz to 17.165MHz.

Therefore, this synthesizer can be said to be on the same level in the connection with the accuracy and stability of oscillation as the crystal oscillator.

2) Frequency Synthesizer

The frequencies for both transmitter and receiver are synthesized by one crystal controlled oscillator and the Phase-Locked-Loop (or P.L.L.) consisting of eight basic building blocks: the divider (1/2) IC 201, the divider (1/1024) IC 201, the phase detector (phase comparator) IC 201, the low-pass filter IC 201, the voltage controlled oscillator (or V.C.O.) IC 202, the down mixer IC 202, the programmable divider IC 201 and the tripler T 201 as shown in Figure 2.

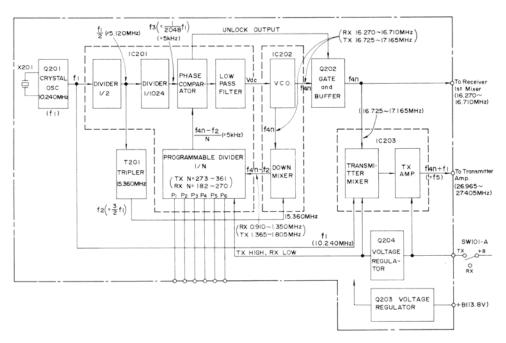


Figure 2 P.L.L. CIRCUIT FREQUENCY SYNTHESIZER

3) Frequency Determining (Refer to Figure 2 and Table 1)

- -1- The crystal oscillator consisting of a crystal X201 (10.240MHz) and transistor Q201 generates a basic frequency f1 (=10.240MHz).
- -2- The basic frequency f_1 is applied to the fixed divided (1/2) network in the IC201 to be divided down to 5.120MHz signal (equivalent to 1/2 of the basic frequency f_1). The 5.120MHz signal is further divided down to a 5kHz ($f_3 = 1/2048 \cdot f_1$) signal by the fixed divided (1/1024) network and this frequency signal f_3 (5kHz) is applied to the input of phase comparator.

In addition to the above, the frequency signal f_1 (10.240MHz) is also applied to the transmitter mixer inside the IC 203 and the frequency signal $f_1/2$ (5.120MHz) is converted to a signal f_2 (15.360MHz) ($f_2 = 3/2 \cdot f_1$) by the tripler network (transformer T201) and this frequency signal f_2 is applied to the down mixer inside the IC 202.

- -3- Frequency signal f4n is the one that is generated by the voltage controlled oscillator (V.C.O.) inside the IC202 and this signal level is determined by DC voltage (Vdc) coming from the IC201. This frequency signal f4n is applied to the down mixer.
 - The following will describe how the signal f4n generated by the V.C.O. serves to maek the P.L.L. (phase locked loop) circuit be locked.
- -4- The V.C.O. frequency signal f4n is mixed down with the above-mentioned signal f2 (15.360MHz) by the down mixer inside the IC202, as a result of which there appears a mixed-down signal f4n-f2. This frequency signal f4n-f2 is applied to the programmable divider inside the IC201.
- -5- The programmable divider (a portion of IC201) divides the frequency f_4n-f_2 by the frequency divider number N (Receiver 182 to 270, transmitter 273 to 361), which is programmable by the channel selector bit of IC901 connected to the terminal pins (1) to (6) of IC201. The assigned number is shown in Table 1. The output frequency $(f_4n-f_2)/N$ (near 5kHz) of the programmable divider is applied to another input of the phase comparator.
- -6- The phase comparator (IC201) compares the frequency f3 (=5kHz) and the other frequency (f4n-f2)/N from the programmable divider and generates a DC voltage Vdc (voltage control signal) proportional to the phase differences of both frequencies. The signal Vdc moves downward when (f4n-f2)/N goes higher then f3 and moves upward when (f4n-f2)/N goes lower than f3. When (f4n-f2)/N equals to f3, the Vdc does not move.
 The voltage signal Vdc from the output of phase comparator goes back to the V.C.O. (voltage controlled oscillator)
 - In voltage signal Vdc from the output of phase comparator goes back to the V.C.O. (voltage controlled oscillator)

 IC 202 via the low-pass filter. Then the closed feedback loop is established.

 In this method, a closed-loop frequency-feedback system, which is so called P.L.L., is formed and the frequency f4n
- of V.C.O. IC202 is locked.

 When the PLL is in lock, the two input signal frequencies to the phase comparator input are equal. Therefore the
- -8- When the P.L.L. is in lock, the two input signal frequencies to the phase comparator input are equal. Therefore the frequency f4n is determined as follows:

The Receiver Frequency

```
f_{4n} = N \times f_3 + f_2
where f_2 = 15.360 \,\text{MHz} \ (=3/2 \cdot f_1)
f_3 = 5 \,\text{kHz} \ (=1/2048 \cdot f_1)
N = 182 \text{ to } 270 \dots Determined channel select bit of IC901 as shown in Table 1.

For example, the frequency f_{4n} of "channel 1" is calculated as follows:
f_{4n} = 182 \times 0.005 + 15.360 \,\text{(MHz)}
= 16.270 \,\text{(MHz)}
```

Namely "N = 182" is assigned for "channel 1". This frequency f_4n is applied to the first mixer Q2 of receiver and the mixer IC203 of transmitter through the buffer amplifier Q202 and the filter coils T205 and T206.

The Transmitter Frequency

(1) $f_4 n = N \times f_3 + f_2$ where $f_2 = 15.360 \text{ MHz}$ $f_3 = 5 \text{ kHz}$

N = 273 to $361 \dots$ Determined by channel select bit of IC901 as shown Table 1.

(During the transmission, switching signal becomes high level (DC) so that the frequency divider number N is changed from one to another and then the number will be applied to the programmable divider.)

For example, the frequency fan of "channel 1" is calculated as follows:

```
f_{4n} = 273 \times 0.005 + 15.360 \text{ (MHz)}
= 16.725 (MHz)
```

Namely "N = 273" is assigned for "channel 1".

This frequency fan is applied to the first mixer Q2 of receiver and the mixer IC 203 of transmitter through the buffer amplifier Q202 and the filter coils T205 and T206.

(2) The transmitter frequency f_5 is determined by mixing the frequency f_4n and the frequency f_1 (= 10.240 MHz).

```
f_5 = f_4 n + f_1
= N \times f_3 + f_2 + f_1
where f_1 = 10.240 \text{ MHz}
f_2 = 15.360 \text{ MHz}
f_3 = 5 \text{ kHz}
N = 273 \text{ to } 361
```

For example, the frequency fs of "channel 1" is calculated as follows: $fs = 273 \times 0.005 + 15.360 + 10.240 \text{ (MHz)}$ = 26.965 (MHz)

Table 1 shows the synthesized frequencies for each channel.

- -9- The gate and buffer circuit made of transistor Q202 works to prevent emission of unnecessary waves when the P.L.L. circuit is unlocked.
- -10- The frequency divider number N of programmable divider is decided by the value set by either of the channel selector LSI (IC904). In any of the channels, it is designed that the frequency divider number N_T at the transmission is larger than that N_R at the reception by a difference of 91. $N_R = N_T 91$

FREQUENCY OF SYNTHESIS CHART -

								TRANSMITTER					
CHANNEL	fs (MHz)	fı (MHz)	f ₂ (=3/2f ₁) (MHz)	f3 (=f1/2048) (kHz)	NR	f4 n (MHz)	f4 n-f 2 (kHz)	fs-f4 n (=f6) (MHz)	f? (MHz)	f7-f6 (=f8) (kHz)	NT	fan (MHz)	f4 n-f 2 (kHz)
1	26.965	10.240	15.360	5	182	16.270	910	10.695	11.150	455	273	16.725	1365
2	26.975	10.240	15.360	5	184	16.280	920	10.695	11.150	455	275	16.735	1375
3	26.985	10.240	15.360	5	186	16.290	930	10.695	11.150	455	277	16.745	1385
4	27.005	10.240	15.360	5	190	16.310	950	10.695	11.150	455	281	16.765	1405
5	27.015	10.240	15.360	5	192	16.320	960	10.695	11.150	455	283	16.775	1415
6	27.025	10.240	15.360	5	194	16.330	970	10.695	11.150	455	285	16.785	1425
7	27.035	10.240	15.360	5	196	16.340	980	10.695	11.150	455	287	16.795	1435
8	27.055	10.240	15.360	5	200	16.360	1000	10.695	11.150	455	291	16.815	1455
9	27.065	10.240	15.360	5	202	16.370	1010	10.695	11.150	455	293	16.825	1465
10	27.075	10.240	15.360	5	204	16.380	1020	10.695	11.150	455	295	16.835	1475
11	27.085	10.240	15.360	5	206	16.390	1030	10.695	11.150	455	297	16.845	1485
12	27.105	10.240	15.360	5	210	16.410	1050	10.695	11.150	455	301	16.865	1505
13	27.115	10.240	15.360	5	212	16.420	1060	10.695	11.150	455	303	16.875	1515
14	27.125	10.240	15.360	5	214	16.430	1070	10.695	11.150	455	305	16.885	1525
15	27.135	10.240	15.360	5	216	16.440	1080	10.695	11.150	455	307	16.895	1535
16	27.155	10.240	15.360	5	220	16.460	1100	10.695	11.150	455	311	16.915	1555
17	27.165	10.240	15.360	5	222	16.470	1110	10.695	11.150	455	313	16.925	1565
18	27.175	10.240	15.360	5	224	16.480	1120	10.695	11.150	455	315	16.935	1575
19	27.185	10.240	15.360	5	226	16.490	1130	10.695	11.150	455	317	16.945	1585
20	27.205	10.240	15.360	5	230	16.510	1150	10.695	11.150	455	321	16.965	1605
21	27.215	10.240	15.360	5	232	16.520	1160	10.695	11.150	455	323	16.975	1615
22	27.225	10.240	15.360	5	234	16.530	1170	10.695	11.150	455	325	16.985	1625
23	27.255	10.240	15.360	5	240	16.560	1200	10.695	11.150	455	331	17.015	1655
24	27.235	10.240	15.360	5	236	16.540	1180	10.695	11.150	455	327	16.995	1635
25	27.245	10.240	15.360	5	238	16.550	1190	10.695	11.150	455	329	17.005	1645
26	27.265	10.240	15.360	5	242	16.570	1210	10.695	11.150	455	333	17.025	1665
27	27.275	10.240	15.360	5	244	16.580	1220	10.695	11.150	455	335	17.035	1675
28	27.285	10.240	15.360	5	246	16.590	1230	10.695	11.150	455	337	17.045	1685
29	27.295	10.240	15.360	5	248	16.600	1240	10.695	11.150	455	339	17.055	1695
30	27.305	10.240	15.360	5	250	16.610	1250	10.695	11.150	455	341	17.065	1705
31	27.315	10.240	15.360	5	252	16.620	1260	10.695	11.150	455	343	17.075	1715
32	27.325	10.240	15.360	5	254	16.630	1270	10.695	11.150	455	345	17.085	1725
33	27.335	10.240	15.360	5	256	16.640	1280	10.695	11.150	455	347	17.095	1735
34	27.345	10.240	15.360	5	258	16.650	1290	10.695	11.150	455	349	17.105	174
35	27.355	10.240	15.360	5	260	16.660	1300	10.695	11.150	455	351	17.115	1755
36	27.365	10.240	15.360	5	262	16.670	1310	10.695	11.150	455	353	17.125	1765
37	27,375	10.240	15.360	5	264	16.680	1320	10.695	11.150	455	355	17.135	177
38	27.385	10.240	15.360	5	266	16.690	1330	10.695	11.150	455	357	17.145	178
39	27.395	10.240	15,360	5	268	16.700	1340	10.695	11.150	455	359	17.155	179
40	27.405	10.240	15.360	5	270	16.710	1350	10.695	11.150	455	361	17.165	180

CRYSTAL

X1 crystal $11.150 \text{MHz} = f_7$ X201 crystal $10.240 \text{MHz} = f_1$

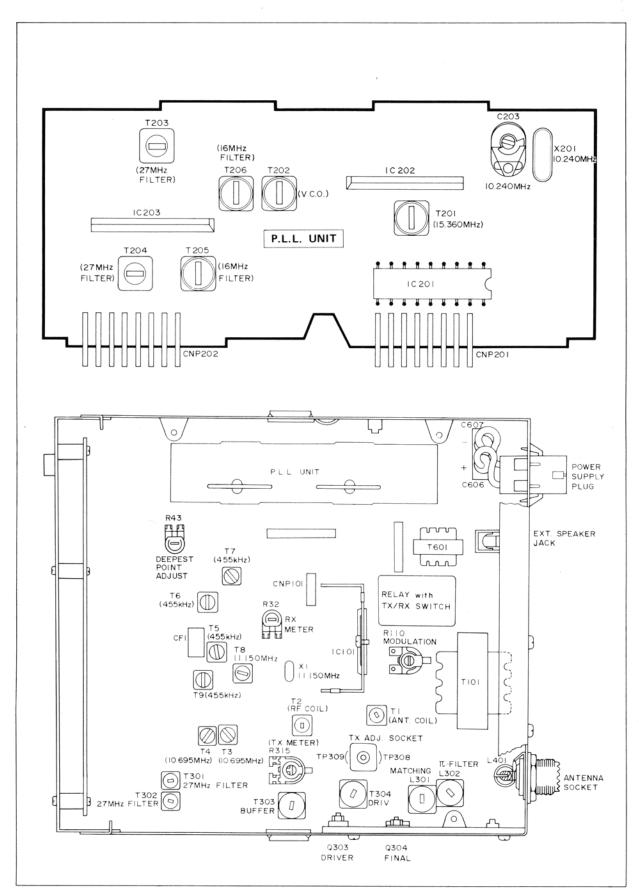


Figure 4 ALIGNMENT POINTS

ALIGNMENT

EQUIPMENT REQUIRED

Frequency Counter:

0 to 40MHz (High Sensitivity)

Synchroscope: Signal Generator: 0 to 50MHz

10MHz to 30MHz with 1000Hz

AM mod.

Audio Signal Generator:

1000Hz (sine wave) 0 to 100dB

Audio Attenuator:

RF Output Power Meter:

RF Voltmeter:

AC V.T.V.M.:

0 to 5W at 27MHz 0 to 3V, 0 to 50MHz

0 to 10V

DC V.T.V.M.:

0 to 10V

DC Milliammeter:

0 to 500mA with Low-pass

Dummy Load 8 ohms

and 50 ohms:

Spectrum Analyzer or

Field Strength Meter

CM Coupler

DC Power Supply:

13.8V, 2A

Non-inductive

[NOTE]

-1 Keep supply voltage to 13.8V always during the alignment.

-2- The tools to be used for the alignment should be nonmetallic ones.

-3- Be sure to keep 50 ohms dummy load connectable with the antenna terminal all the way during the transmitter alignment.

-4- The main unit, speaker/S-RF meter unit and microphone unit must be, when operated together, considered an independent set.

PHASE LOCKED LOOP (P.L.L.) CIRCUIT ALIGNMENT

	STEP	CONNECTION OF MEASURING INSTRUMENT	ADJUST- MENT	PROCEDURE
(1	1 10.240 MHz)	Connect a frequency counter, through 5PF capacitor, to the test point TP201 (Emitter of transistor Q201).	C203	Adjust so that the frequency counter reads within 10.240 MHz ± 300 Hz.
(1	2 5.360 MHz)	 Connect an RF voltmeter to the test point TP 202 (the terminal No. 4 of IC 202). Connect a frequency counter, through 5PF capacitor, to the test point TP 202. 	T201	 Adjust so that the RF voltmeter reads the maximum. Make sure the frequency counter is reading within 15.360 MHz ± 450 Hz.
	(V.C.O.)	Connect a D.C. V.T.V.M. to the test point TP203.	T202	 Set the channel to "1". Adjust so that the D.C. V.T.V.M. reads exactly 2.0 V. Set the channel to "1" and/or "40" and make sure the D.C. V.T.V.M. reads within 2.0 V to 4.3 V.
4 (16MHz Filter)		Connect an RF voltmeter to the test point $\boxed{\text{TP204}}$. (the secondary of the transformer T205).	T205 T206	1) Set the channel to "40". 2) Adjust so that the RF voltmeter reads the maximum. (about 400 mV ± 200 mV)
(16	5 MHz Frequency)	Connect a frequency counter, through 5PF capacitor, to the test point <u>TP204</u> (the secondary of the transformer T205).		1) Set the channel to "1". 2) Make sure the frequency counter is reading 16.270 MHz (RX) and 16.725 MHz (TX). 3) Set the channel "40". 4) Make sure the frequency counter is reading 16.710 MHz (RX) and 17.165 MHz (TX).
TX	6 (27 MHz Filter)	Connect a RF voltmeter to the test point TP205 (the secondary of the transformer T204).	T203 T204	1) Set the channel to "20". 2) Adjust so that the RF voltmeter reads the maximum. (about 2.5 V to 3.5 V)
	7 (27 MHz Frequency)	Connect a frequency counter, through 5PF capacitor, to the test point TP205 (the secondary of the transformer T204).		Set the channel to "20". Make sure the frequency counter is reading within 27.205 MHz ± 300 Hz.
8 (27MHz Frequency Readjust)		Same as step 7.	C203	 Set the channel to "20". Readjust so that the frequency counter reads within 27.205 MHz ± 300 Hz.

RECEIVER ALIGNMENT

STEP	CONNECTION OF MEASURING INSTRUMENT	ADJUST- MENT	PROCEDURE
(11.150 MHz)	Connect a frequency counter, through 5PF capacitor, to the test point TPI. (Base of transistor Q3)	Т8	Adjust so that the frequency counter reads within $11.150 \text{ MHz} \pm 100 \text{ Hz}$. (The oscillation voltage then is about 90mV)
(1st-IF and 2nd-IF)	 Connect an AC V.T.V.M. to both sides of the speaker voice coil lug. Connect a signal generator, through 0.01 MFD capacitor, to the test point TP2 (the secondary of the transformer T2). Set the signal generator to 10.695 MHz, modulation 1000 Hz, 30%. NOTE: Be sure to connect the ground wire of signal generator to the ground of the antenna socket. 	T3 T4 T5 T6 T7 T9	Adjust so that the AC V.T.V.M. reads the maximum. IF waveform can be said to be best adjusted when it becomes maximum in size and its band width is the widest with the central frequency similar to that of the ceramic filter.
3 (RF)	 Connect the AC V.T.V.M. to both sides of the speaker voice coil lug. Connect the signal generator to the antenna socket. Set the signal generator to 27.175 MHz (18 channel), modulation 1000 Hz, 30%. 	T2 T1	Set the channel to "18". Adjust the AC V.T.V.M. until it reads the maximum.
4 (Deepest Point of Squelch)	 Connect a signal generator to the antenna socket, keeping the frequency of signal generator to 27.175 MHz ("18 channel") and modulation 1000 Hz, 30%. Connect a low-frequency wattmeter to the external speaker jack. 	R43 (30K ohms –B)	 Adjust the channel indication of the unit to "18" and set the volume control to "MAX" position. Set the output level of a signal generator to "60 dB" (1000 Hz, 30%). At the time make sure the low-frequency wattmeter reads approx. 4W (maximum). Next, adjust the volume control so that the low-frequency wattmeter indicates 500 mW. Rotate the squelch control knob of the unit fully clockwise. Adjust the semi-fixed resistor R43 so that the low-frequency output becomes 0.05W.

TRANSMITTER AND MODULATOR ALIGNMENT

- -1- When the set is made ready for the transmitting operation, be sure to always connect the RF output power meter and 50 ohms dummy load to the external antenna socket—this should never be forgotten even if it is not noted down specifically. If otherwise, the final transistor Q304 may be damaged.
- -2- When making the connection of measuring instruments, see Figure 5.

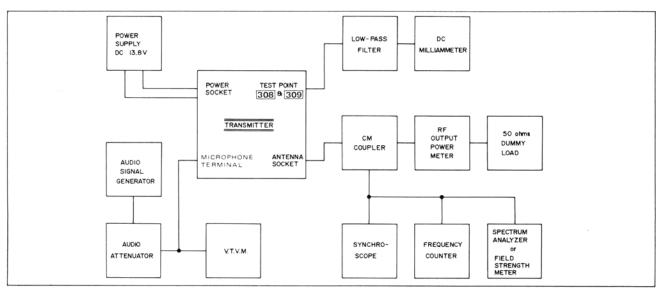


Figure 5

STEP	CONNECTION OF MEASURING INSTRUMENT	ADJUST- MENT	PROCEDURE
1 (27 MHz Filter)	Connect the synchroscope to the test point TP301 (Base of transistor Q302).	T301 T302	 Set the channel to "40". Adjust so that the maximum waveform (amplitude) appears on the synchroscope. Set the channel to "1" and/or "40" to make sure the waveform doesn't decrease in size. Loosen the core of T301 by 2 turns from a peak point where the output is maximum.
2 (Buffer)	 Remove the plug which have been inserted in the test points TP308 and TP309 of the set. Connect in turn DC milliammeter, through the RF rejection filter shown in Figure 6, to the test points TP308 and TP309. 	T303	1) Set the channel to "40". 2) Adjust so that the DC milliammeter connected to the test point TP309. reads the maximum. (Driver current)
3 (Driver)	Same as above.	T304	Adjust so that the DC milliammeter connected to the test point TP309 indicates the dip point. The amperage then is about 45 to 80 mA.
4 (Final)	Same as step 2, and connect the RF output power meter and 50 ohms dummy load to the antenna socket.	L301	Adjust so that the DC milliammeter connected to the test point TP308 reads 450mA ± 50mA (Final current).
5 (π-Filter)	Same as above.	L302	Adjust so that the RF output power meter reads the maximum. The reading then should not exceed 4W. (FCC Rules and Regulations Part 95, Section 95. 43.)
6	Repeat the steps 2 to 5 until the best results	will be obtain	ned.
7 (Modulation)	 Connect the RF output power meter, 50 ohms dummy load and synchroscope, through CM coupler, to the antenna socket. Connect a audio signal generator, attenuater and AC V.T.V.M. to the microphone terminal. Keep the output of audio signal generator to 1000 Hz, 700 mV. 	R110 (1K ohms –B)	 Set the channel to "20". Turn R110 counterclockwise until the modulation limiter circuit stops its function. Make sure there appears 700mV input signal at the microphone terminal from an audio signal generator. Depress the press-to-talk switch on the microphone. Adjust R110 so that the modulation factor of RF output waveform appeared on the synchroscope becomes 95 to 99% (See Figure 7). Set the attenuator to "-41dB" (6 mV). Make sure the modulation factor of RF output waveform on a synchroscope is more than 50%.

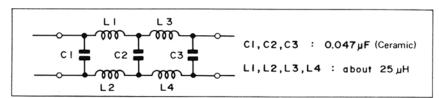


Figure 6 RF REJECTION FILTER (LOW-PASS FILTER)

STEP	CONNECTION OF MEASURING INSTRUMENT	ADJUST- MENT	PROCEDURE
1 (RX)	Connect the signal generator to the antenna socket and set the frequency to 27.175 MHz ("18" channel) and the modulation to 1000Hz, 30%. Keep the output of signal generator to 40dB.	R32	 Set the channel to "18". Adjust so that the signal/RF power meter indicates "9" on the "SIGNAL" scale.
2 (TX)	Connect the RF output power meter and 50 ohms dummy load to the antenna socket.	R315	 Set the channel to "20" and make the set be ready for the transmitting operation (non-modulation however). First make sure of what value the pointer of signal/RF power meter indicates on the "POWER" scale and then adjust R315 so that such a value becomes nearly the same as that of the RF output power meter connected to the antenna socket. (The RF power output then is about 3.5W.)
3 (Meter)	Same as step 1 (when replacing the speaker box or meter with a new one).	R807	In the same manner as in step 1, adjust the semi-fixed resistor R807 and concurrently make sure that the requirement in step 2 is also satisfactory.

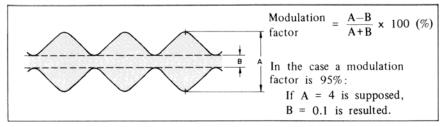


Figure 7

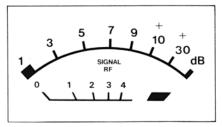


Figure 8 SIGNAL/RF POWER METER (ME801)

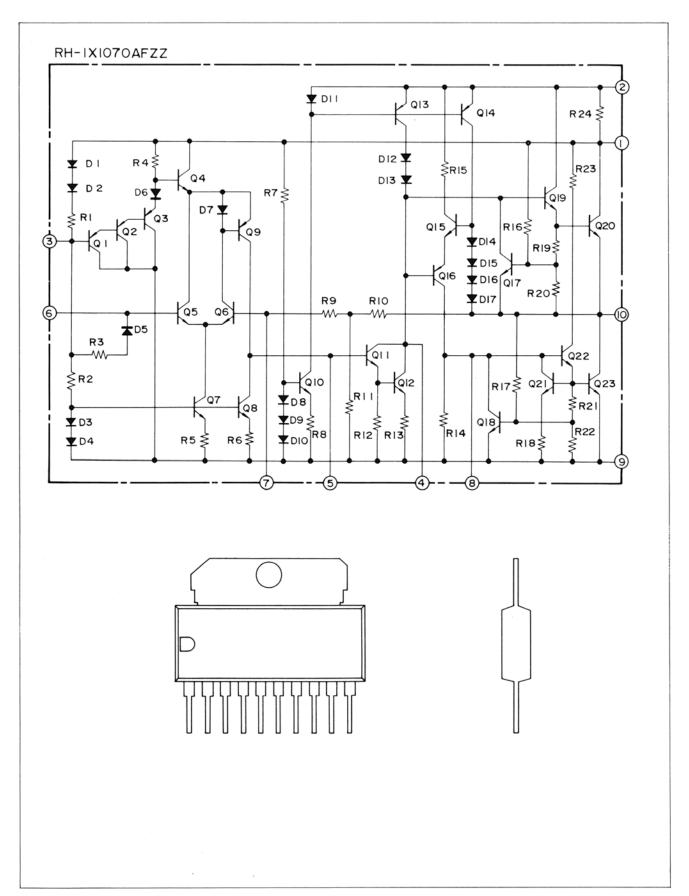


Figure 9 EQUIVALENT CIRCUIT OF IC101

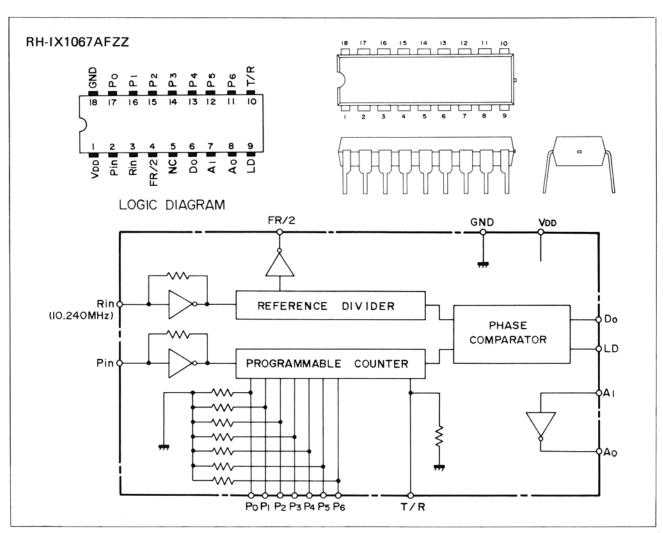


Figure 10 EQUIVALENT CIRCUIT OF IC201

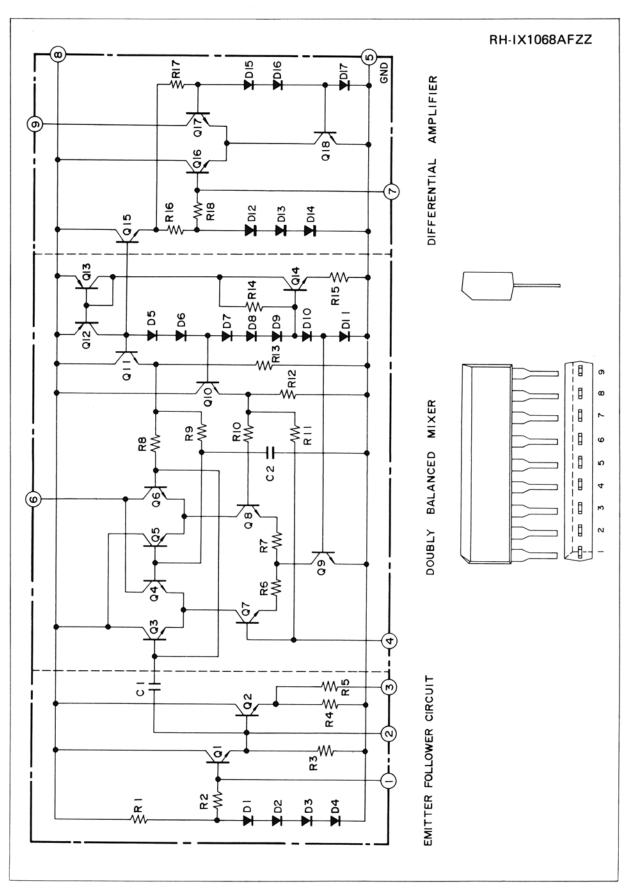


Figure 11 EQUIVALENT CIRCUIT OF IC202 and IC203

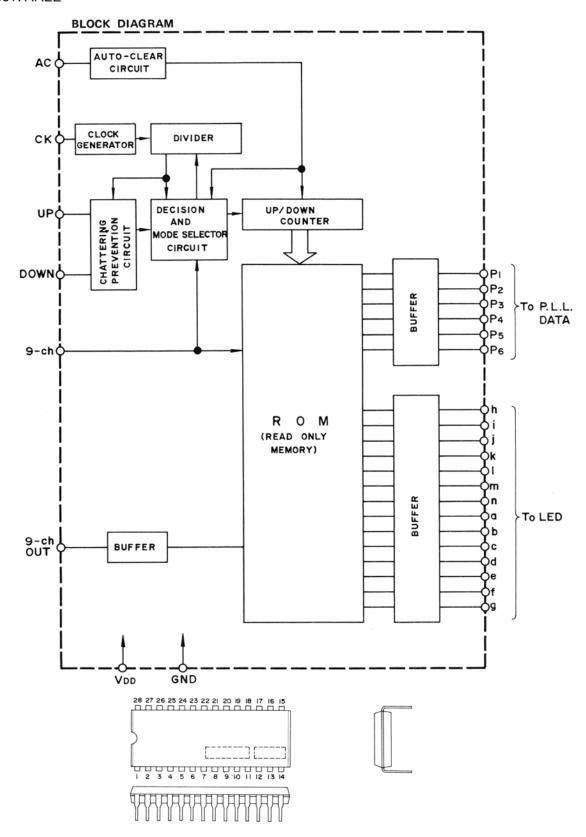
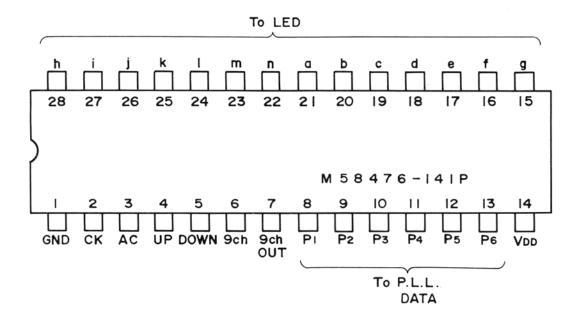



Figure 12 EQUIVALENT CIRCUIT OF IC901

C-MOS IC USED IN THE CHANNEL SELECTOR

1. OUTLINE

This C-MOS IC is the IC which is coupled directly with the C-MOS IC employed for the P.L.L. system digital frequency synthesizer and one chip of it includes a 6-bit up-down counter and ROM etc. At the output stage are produced 6-bit data output which allows a direct connection of this IC with the C-MOS IC for the P.L.L. system synthesizer, and 2-digit segment output which can drive directly the LED into action.

2. FUNCTIONS

(1) Auto-Clear Circuit

A connection of capacitor to the terminal AC permits the unit to automatically indicate 9-channel when the power switch is turned on, and if the terminal AC is forced to get low level, the present channel whichever it may be is changed to 9-channel.

(2) Clock generator

With resistor and capacitor being connected to the terminal CK, the clock generator is to provide oscillation of 256Hz (in which, R=510K ohm, $C=0.01\mu F$) but the clock generation is left in a stop except when it becomes needed for the succeeding circuits.

(3) Forward Advance of the Channels

At the terminal "Up" for the channel selector's input is included the pull-up resistor which maintains high level when it is kept open. When the terminal "Up" is made to get low level from high level (or, the open condition) the present channel moves forward by 1 channel --- if the terminal "Up" is maintained at low level for more than a particular interval (1 second) the channel indication advances forward at the rate of 4 channels per second.

(4) Backward Advance of the Channels

At the terminal "Down" for the channel selector's input is included the pull-up resistor which maintains

high level when it is kept open. When the terminal "Down" is made to get low level from high level (or, the open condition), the present channel moves backward by 1 channel --- if the terminal "Down" is maintained at the low level for more than a particular interval (1 second) the channel indication advances backward at the rate of 4 channels per second. Note that when the terminals "Up" and "Down" are made to get low level at a time, the function peculiar to the former (Up) is given priority.

(5) Chattering Preventive Circuit

At the input terminals "Up" and "Down" is incorporated a circuit that is to prevent a chattering within 16 ms.

(6) Function of Priority-Given Channel (9-ch.)

When the terminal 9-ch. is made to get low level, the 9-channel is given priority to be selected rather than the other channels and when it is, then, made to go high level or open, the preset channel resumes. Besides, as long as the terminal 9-ch. is maintained at low level, it is inhibited for the channels to advance either forward or backward.

(7) P.L.L. Data Output

The output terminals P₁ to P₆ may be connectable with the data input terminals of the P.L.L. system's C-MOS IC, and what the output data will be is determined by the ROM.

(8) Channel Display Output

The outputs from the terminals (a) to (n) enable directly the LED to be driven.

Note:

The channel selector "Up and Down" do not operate when the channel 9 switch is locked into channel 9 position, or if you are operating in the transmit (TX) mode.

TRUTH TABLE FOR A RELATIONSHIP BETWEEN THE CHANNEL NUMBERS AND P.L.L. DATA OUTPUTS AND CHANNEL DISPLAY OUTPUTS

P.L.L. DATA OUTPUT					CHANNEL DISPLAY OUTPUT										9-СН.						
CHANNEL	P1(8)	P2(9)	P3(10)	P4(11)	P5(12)	P6(13)	28)	27)	26)	25)	24)	23)	(22)	21)	20	19	18	(17)	(16)	15)	OUT
	s	t	u	v	w	х	h	i	j	k	1	m	n	a	b	С	d	e	f	g	7
1	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0
2	1	0	0	0	0	0	1	1	1	1	1	1	1	0	0	1	0	0	1	0	0
3	0	1	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	1	1	0	0
4	0	0	1	0	0	0	1	1	1	1	1	1	1	1	0	0	1	1	0	0	0
5	1	0	1	0	0	0	1	1	1	1	1	1	1	0	1	0	0	1	0	0	0
6	0	1	1	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
7	1	1	1	0	0	0	1	1	1	1	1	1	1	0	0	0	1	1	1	1	0
8	1	0	0	1	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
9	0	1	0	1	0	0	1	1	1	1	1	1	1	0	0	0	1	1	0	0	1
10	1	1	0	1	0	0	1	0	0	1	1	1	1	0	0	0	0	0	0	1	0
11	0	0	1	1	0	0	1	0	0	1	1	1	1	1	0	0	1	1	1	1	0
12	0	1	1	1	0	0	1	0	0	1	1	1	1	0	0	1	0	0	1	0	0
13	1	1	1	1	0	0	1	0	0	1	1	1	1	0	0	0	0	1	1	0	0
14	0	0	0	0	1	0	1	0	0	1	1	1	1	1	0	0	1	1	0	0	0
15	1	0	0	0	1	0	1	0	0	1	1	1	1	0	1	0	0	1	0	0	0
16	1	1	0	0	1	0	1	0	0	1	1	1	1	1	1	0	0	0	0	0	0
17	0	0	1	0	1	0	1	0	0	1	1	1	1	0	0	0	1	1	1	1	0
18	1	0	1	0	1	0	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0
19	0	1	1	0	1	0	1	0	0	1	1	1	1	0	0	0	1	1	0	0	0
20	0	0	0	1	1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0
21	1	0	0	1	1	0	0	0	1	0	0	1	0	1	0	0	1	1	1	1	0
22	0	1	0	1	1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0
23	1	0	1	1	1	0	0	0	1	0	0	1	0	0	0	0	0	1	1	0	0
24	1	1	0	1	1	0	0	0	1	0	0	1	0	1	0	0	1	1	0	0	0
25	0	0	1	1	1	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0	0
26	0	1	1	1	1	0	0	0	1	0	0	1	0	1	1	0	0	0	0	0	0
27	1	1	1	1	1	0	0	0	1	0	0	1	0	0	0	0	1	1	1	1	0
28	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0
29	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0
30	1	1	0	0	0	1	0	0	0	0	1	1	0	1	0	0	1	1	1	1	0
32	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	1	0	0
33	1	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0
34	0	1	1	0	0	1	0	0	0	0	1	1	0	1	0	0	1	1	0	0	0
35	1	1	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	1	0	0	0
36	0	0	0	1	0	1	0	0	0	0	1	1	0	1	1	0	0	0	0	0	0
37	1	0	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	1	1	1	0
38	0	1	0	1	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
39	1	1	0	1	0	1	0	0	0	0	1	1	0	0	0	0	1	1	0	0	0
40	0	0	1	1	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	1	0
	"1":"I				_" level			Ū								Ů					

CAUTIONS ON HANDLING MOS IC

MOS IC is to control the electric conductivity between the source and drain by using the voltage at the gate electrode through insulating oxide film (SiO_2) . If overvoltage is applied to the gate electrode, the insulator at the gate electrode undergoes dielectric breakdown. Once such dielectric breakdown occurs, the junction between the gate and other terminals is shortcircuited and MOS IC is so damaged that its quality will not be recovered again.

And, MOS IC is highly sensitive to static charge because its gate oxide film is as thin as 1000Å to 1500Å. Input protective circuit is provided to protect MOS IC but this circuit can not always play its role according to the conditions of using MOS IC.

Therefore, pay due attention to the following when handling it.

1. Cautions on Transportation and Preservation

As for MOS IC, either the input or output terminal has remarkably high impedance in comparison with ordinary semiconductor IC. Therefore, MOS IC is liable to be affected by the induction of neary-by high-tension power source or A.C. power source and it may be given a larger voltage unexpectedly due to body discharged possibly causing dielectric breakdown of the gate. To eliminate this, during transportation and preservation of MOS IC all the terminals shoule be kept at the same potential in the following methods (to shortcircuit all the terminals).

- (1) Wind thin wire around MOS IC.
- (2) Fit metallic ring on it.
- (3) Pack it with aluminum foil.
- 4) Hold it by electric conductive jig.
- (5) Put it in a special case for LSI.

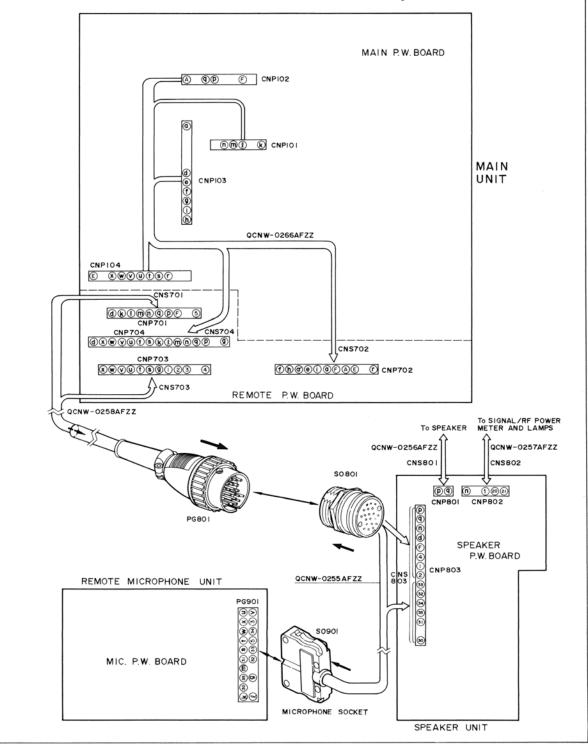
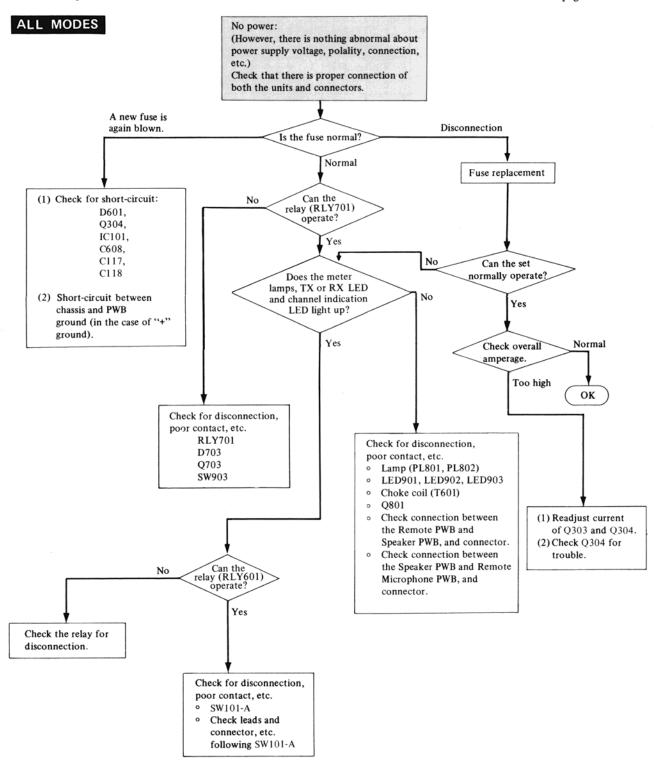
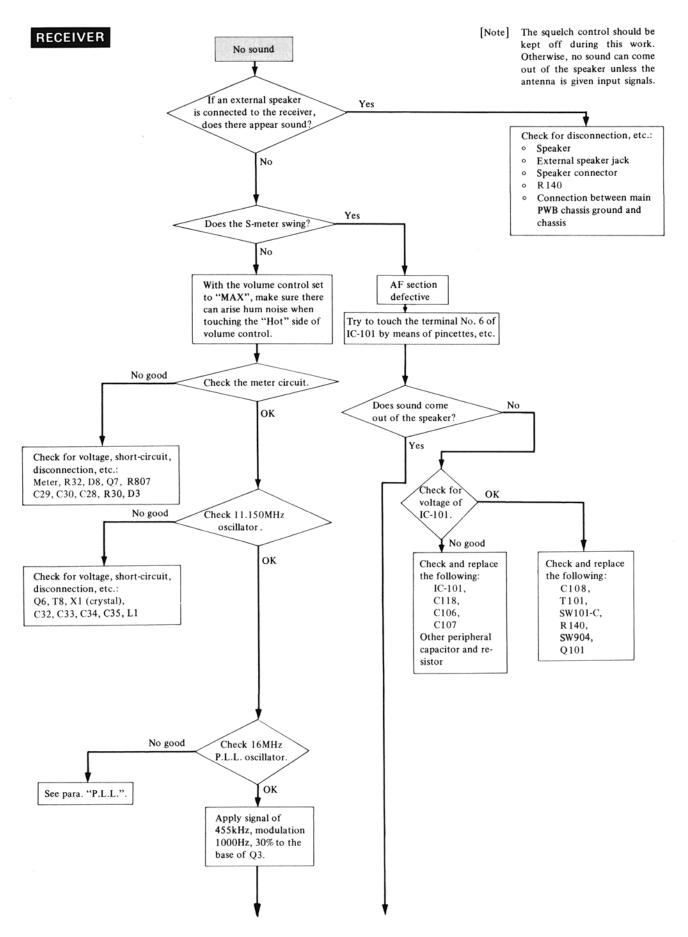
Note: Never put MOS IC in a mal-conductive container such as made of polystyrene.

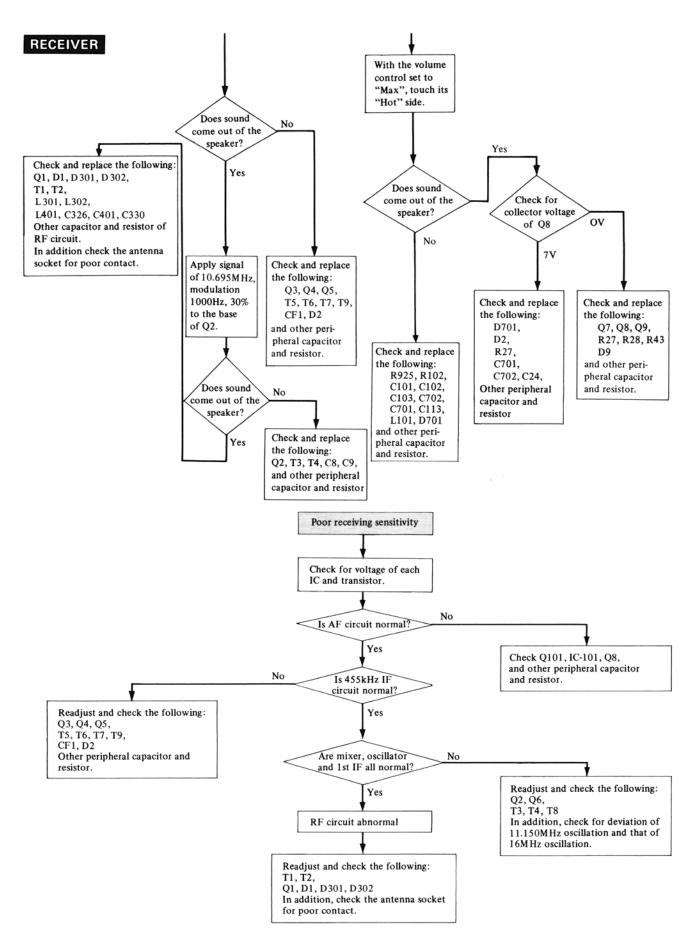
2. Cautions on Servicing

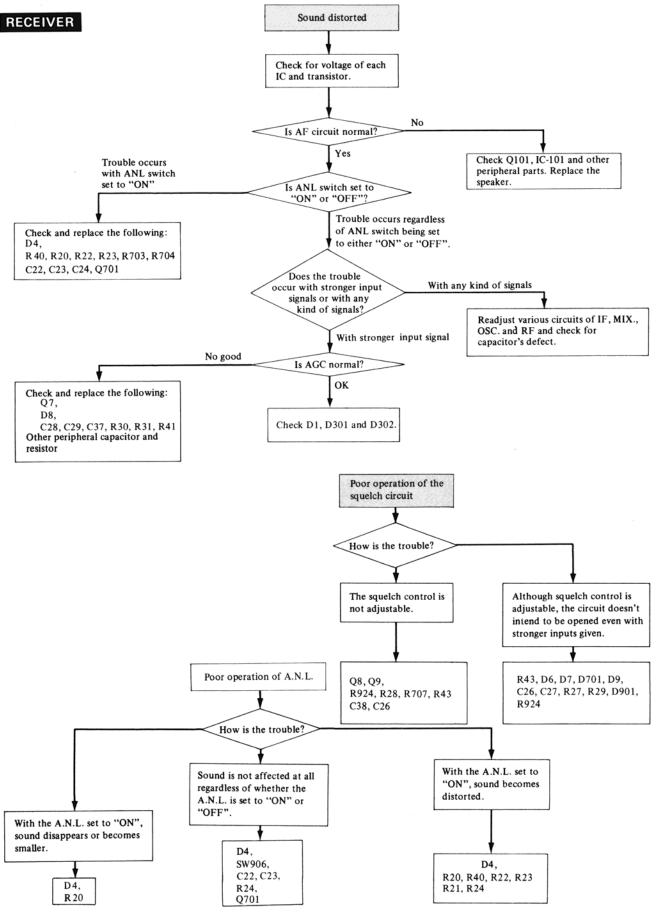
- (1) A soldering tool to be used should be the less-leak one (more than 100K ohm of leak resistance there may be a soldering tool of more than 1 Meg. ohm to be used for semiconductor). Otherwise, ground the soldering tool when using it
- (2) Ground the earth terminal of a measuring instrument.
- 3 Ground a bench.
- 4 Before insertion or removal of LSI to or from P.W.B., be sure to turn off the power switch.
- (5) When inserting LSI to P.W.B., ground the earth terminal of P.W.B.
- 6 Never touch the terminals of LSI by hand.
- (7) Be sure to ground the earth terminal of D.C. power source.
- (8) To prevent LSI from being broken due to human body discharge, it is necessary to ground the human body. But this requires the greatest care as otherwise the body encounters large current (absolutely avoid touching A.C. power source).
- As MOS IC is actuated with a small current, be sure to remove soldering flux and perform moisture-proof treatment after repairing. (Apply moisture-proof agent for electronic calculator.)

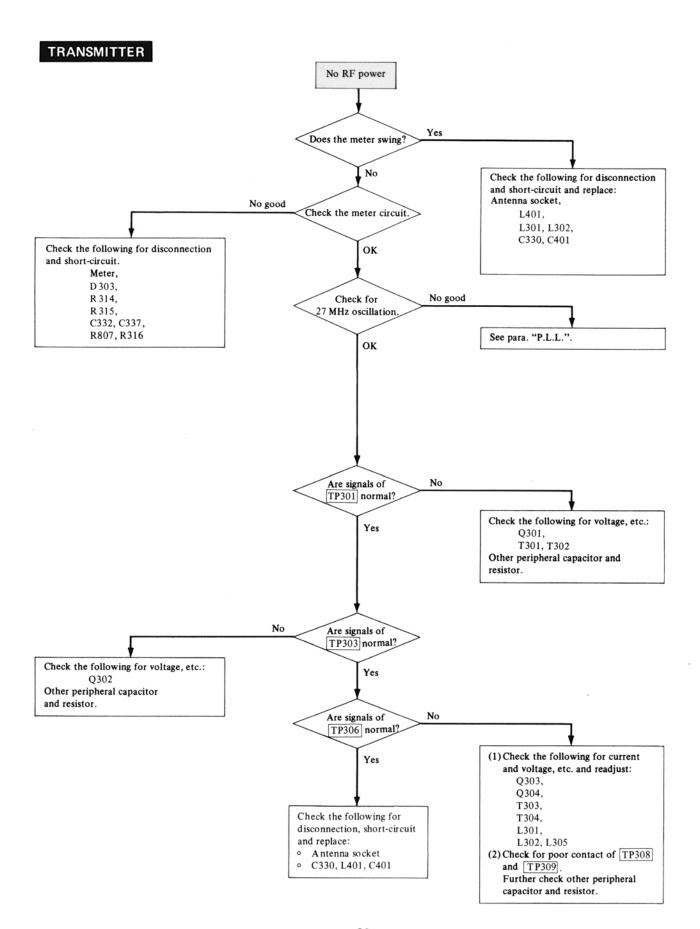
CONNECTORS JUNCTION DIAGRAM

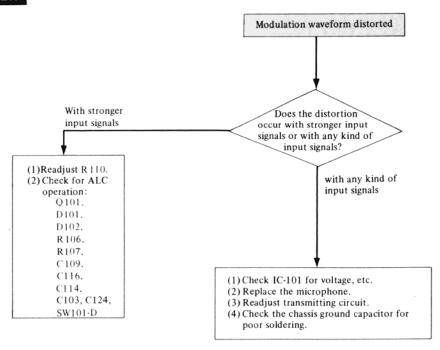
- (1) Junction of all the connections is as illustrated below. (2) For identification of the pin numbers of the con-Check that there is no mis-wiring nor wire disconnection.
 - nectors, see the Wiring Side of P.W. Board shown in both Figures 17 and 18.
 - (3) The main unit, speaker/S-RF power meter unit and microphone unit must be, when operated together, considered an independent set.

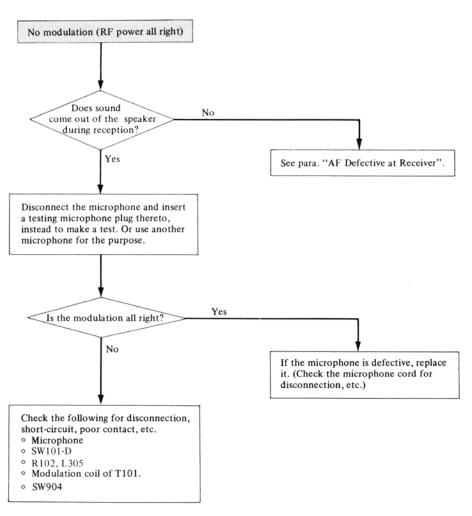




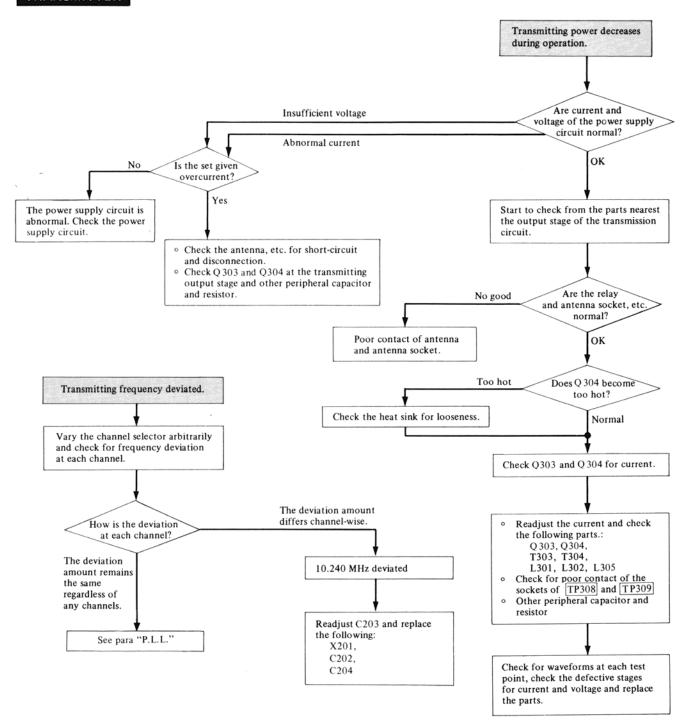

Figure 13


TROUBLE SHOOTING GUIDE


When you try to investigate the unit referring to the TROUBLE SHOOTING GUIDE, be sure, in advance, to check that there is no mis-wiring nor wire disconnection in reference with the CONNECTORS JUNCTION DIAGRAM of page 21.







TRANSMITTER

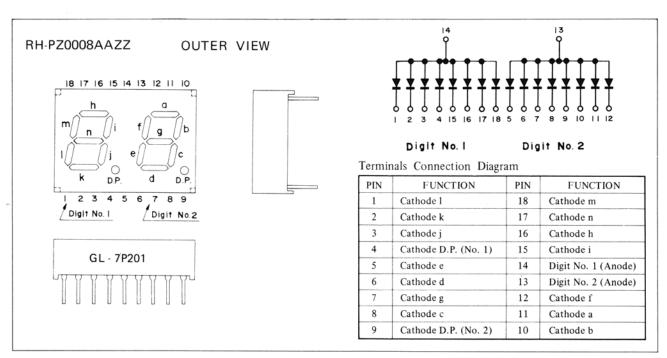


Figure 14 CHANNEL INDICATOR (LED 901)

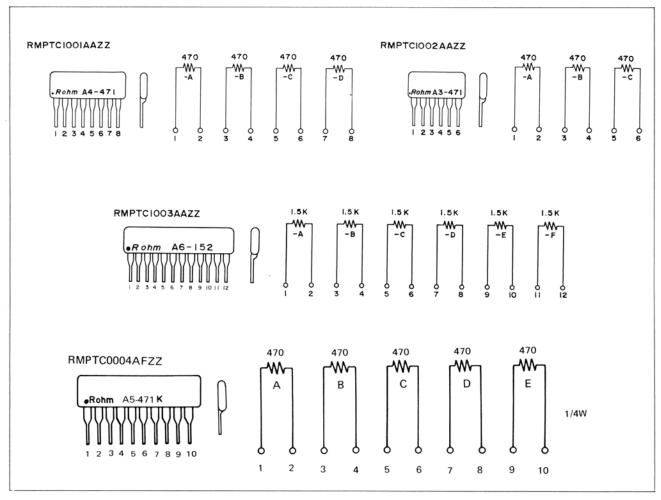


Figure 15 RESISTOR ARRAY

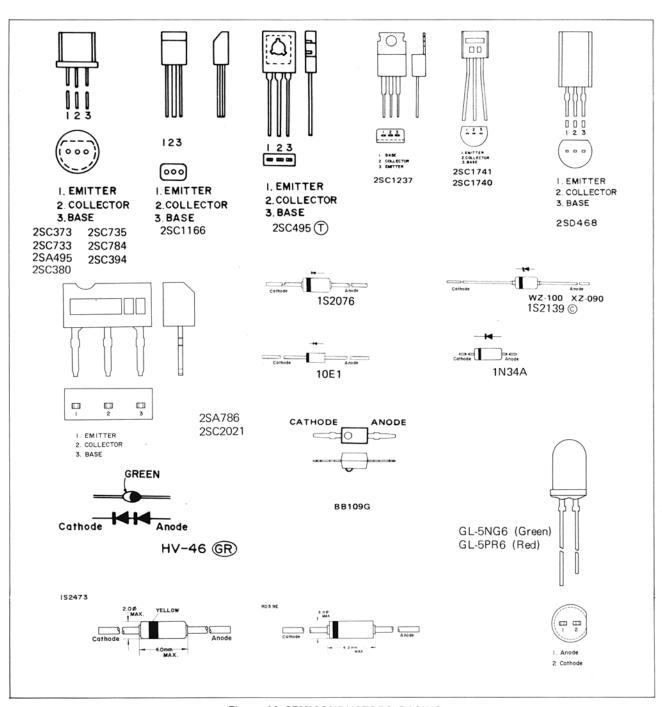


Figure 16 SEMICONDUCTORS BASING

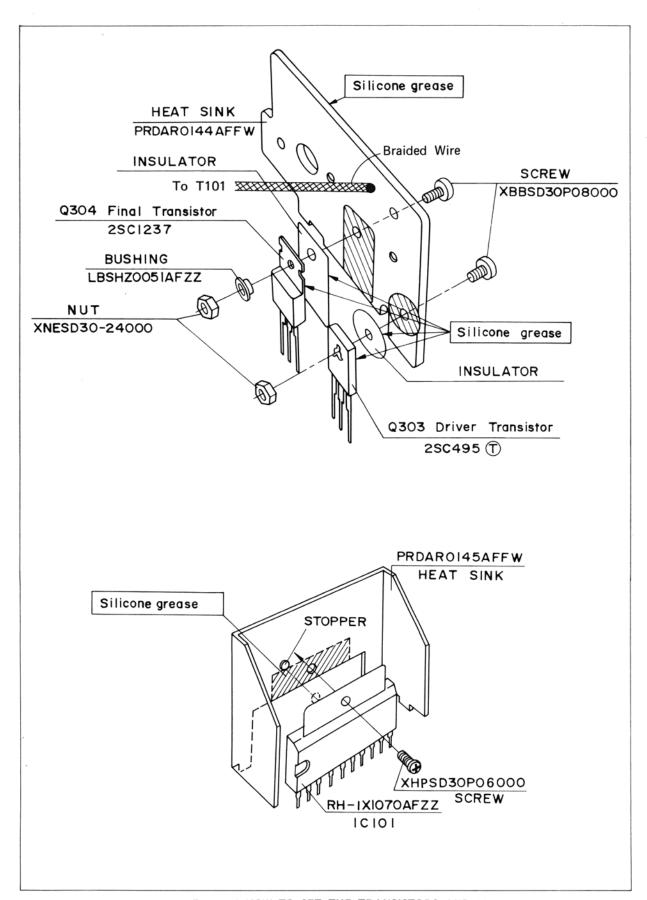


Figure 20 HOW TO SET THE TRANSISTORS AND IC

REPLACEMENT PARTS LIST

"HOW TO ORDER REPLACEMENT PARTS"

To have your order filled promptly and correctly, please furnish the following informations.

3. PART NO.

1. MODEL NUMBER 2. REF. NO.

4. DESCRIPTION

Order to: Parts Center

P.O. Box 664 Paramus, New Jersey 07652 (201) 265-5600

P.O. Box 20394 Long Beach, Calif. 90801 (213) 830-4470

REF. NO.	PART NO.	DESCRIPTION	REF. PART NO.		DESCRIPTION
	INTEGRA	ATED CIRCUITS			
			Q702	VS2SC1741//-1	Voltage Regulator (2SC1741)
IC101	RH-IX1070AFZZ	Audio Power Amplifier	Q703	VS2SC1741//-1	Power Switching (2SC1741)
		(TA7205AP)	Q801	VS2SD468-C/-1	Channel Indication Driver
IC201	RH-IX1067AFZZ	P.L.L. Synthesizer, Divider,	0002	1/02/02/02/1// 1	(2SD468©)
		Phase Comparator, Low-Pass	Q802	VS2SC2021//-1	9-channel Flashing (2SC2021)
		Filter and Programmable Divider (TC9102P)	Q803	VS2SC2021//-1	9-channel Flashing (2SC2021)
IC202	RH-IX1068AFZZ	P.L.L. Synthesizer, V.C.O.			
10202	KII-IXIOOOXI ZZ	(Voltage Controlled Oscilla-			DIODES
		tor) and Down Mixer			-100-20
		(TA7310P)	D1	VHD1S2076//-1	Static Protector (1S2076)
IC203	RH-IX1068AFZZ	Transmitter, 27MHz Mixer	D2	VHD1N34A///-1	AM Detector (1N34A)
		and Amplifier (TA7310P)	D3	VHD1N34A///-1	Signal Meter (1N34A)
IC901	RH-IX0017AAZZ	C-MOS IC, Channel Selector	D4	VHD1S2076//-1	A.N.L. (Automatic Noise
		(M58476-141P)			Limiter) (1S2076)
			D5	VHEWZ-100//1F	Zener Diode, Voltage Regulator (10V ± 0.5V) (WZ-100)
	TRA	ANSISTORS	D6	VHD1S2076//-1	Squelch (1S2076)
		_	D7	VHD1S2076//-1	Squelch (1S2076)
Q1	VS2SC784-R/1F	RF Amplifier (2SC784®)	D8	VHD1S2473//-1	A.V.C. (1S2473)
Q2	VS2SC394-Y/-1	1st-Mixer (10.695MHz) (2SC394 Y)	D9	VHVHV46-G//-1	Varistor, Squelch Stabilizer (HV-46 (GR))
Q3	VS2SC380-O/-1	2nd-Mixer (455kHz)	D101	VHD1S2076//-1	Modulation Limiter (1S2076)
		(2SC380①)	D102	VHD1S2076//-1	Modulation Limiter (1S2076)
Q4	VS2SC380-Y/-1	IF (455kHz) Amplifier	D201	VHCBB109G//-1	Varicap, V.C.O. (BB109G)
Q5	VS2SC380-Y/-1	(2SC380 Y) IF (455kHz) Amplifier	D202	VHC1S2139-C-1	Varicap, TX Shifter (1S2139©)
Q.	10250500 1/ 1	(2SC380 Y))	D204	VHEXZ-090//-1	Zener Diode, Voltage Regulator,
Q6	VS2SC380-O/-1	Crystal (11.150MHz) Oscillator			9V±0.25V (XZ-090)
		(2SC380①)	D205	VHEXZ-090//-1	Zener Diode, Voltage Regulator,
Q7	VS2SC373-G/-1	AVC Amplifier (2SC373)			9V±0.25V (XZ-090)
Q8	VS2SC733-BL-1	Squelch Voltage Amplifier	D301	VHD1S2076//-1	Static Protector (1S2076)
		(2SC733 (BL))	D302	VHD1S2076//-1	Static Protector (1S2076)
Q9	VS2SC1740Q/-1	Squelch Switching	D303	VHD1S2076//-1	Meter, RF Power (1S2076)
0101	VC2C 4 405 V/ 1	(2SC1740Q)	D601	VHD10E1////-1	Circuit Protector (10E1)
Q101	VS2SA495-Y/-1	Modulation Limiter (2SA495 ♥)	D602	VHD10E1///-1	Protector (10E1)
Q201	VS2SC373-G/-1	P.L.L. Synthesizer, Crystal	D701 D702	VHD1S2473//-1 VHEXZ-090//-1	Squelch Switching (1S2473)
Ø201	. 0200 57 5-07-1	(10.240MHz) Oscillator		* HEAZ-090//-1	Zener Diode, Voltage Regulator, 9V ± 0.25V (XZ-090)
0202	HOADGARA C.	(2SC373)	D703	VHD10E1////-1	Protector (10E1)
Q202	VS2SC373-G/-1	P.L.L. Synthesizer, Buffer and	D704	VHD10E1////-1	Memory (10E1)
0202	VC2CD4(0 C/ 1	Gate (2SC373)	D705	VHD10E1////-1	Memory (10E1)
Q203	VS2SD468-C/-1	P.L.L. Synthesizer, Voltage	D706	VHD10E1////-1	Memory (10E1)
Q204	VS2SC1741//-1	Regulator (2SD468©)	D708	VHD10E1////-1	Memory (10E1)
Q204	¥ 323C1 /41//-1	P.L.L. Synthesizer, Voltage Regulator, TX (2SC1741)	D709	VHD1S2473//-1	Memory (182473)
Q301	VS2SC735-Y/-1	Transmitter, Buffer Amplifier	D710	VHD1S2473//-1 VHD1N34A///-1	Memory (182473)
Q501	+ 5250 / 55-1 /-1	(2SC735 \textcircled{D})	D711 D901		Memory (1N34A)
Q302	VS2SC1166-Y-1	Transmitter, 27MHz Amplifier	10901	VHERD3.9E-B//	Zener Diode, Voltage Regulator, 3.7V ~4.1V (RD3.9E B)
		(2SC1166 ♥)	LED901	LED901 RH-PZ0008AAZZ LED (Light Emitting Diode).	
Q303	VS2SC495-T/-1	Transmitter, Driver (2SC495 T)	222701		Channel Indicator (GL-7P201)
Q304	VS2SC1237-/1F	Transmitter, Final (2SC1237)	LED902	VHPGL5NG6//-1	LED (Light Emitting Diode),
Q701	VS2SA786///-1	ANL (Automatic Noise Limiter)			RX Indicator, Green,
		Switching (2SA786)			(GL-5NG6)

REF. NO.	PART NO.	DESCRIPTION	REF. NO.	PART NO.	DESCRIPTION	
LED903	VHPGL5PR6//-1	LED (Light Emitting Diode), TX	C107	VCEAAU1CW106Y	10MFD, 16V, +50 -10%	
		Indicator, Red, (GL-5PR6)	C108	VCEAAU1AW227Y	220MFD, 10V, +50 -10%	
			C109	VCEAAU1CW106Y	10MFD, 16V, +50 -10%	
			C112	VCEAAU1EW335A	3.3MFD, 25V, +75 -10%	
		COILS	C113	VCEAAU1CW336Y	33MFD, 16V, +50 -10%	
			C116	VCEAAU0JW476Y	47MFD, 6.3V, +50 -10%	
L1	RCILC0023AFZZ	OSC. Choke	C117	VCEAAU1CW108Y	1000MFD, 16V, +50 - 10%	
L101	RCILC0023AFZZ	AF Choke	C119	VCEAAU1CW106Y	10MFD, 16V, +50 - 10%	
L301	RCILR0135AFZZ	Transmitter, Matching	C211	VCSATU1VF224M	.22MFD, 35V, ±20%, Tantalu	
		(Loading)	C225	VCSATU1EF105M	1MFD, 25V, ±20%, Tantalu	
L302	RCILR0055AFZZ	Transmitter, π-Filter	C228	VCEAAU1AW107Y	100MFD, 10V, +50 -10%	
L305	RCILC0011AFZZ	RF Choke (TX)	C232	VCEAAU1AW476Y	47MFD, 10V, +50 -10%	
L401	RCILR0329AFZZ	Antenna Choke	C237	VCEAAU1HW105A	1MFD, $50V$, $+75 - 10%$	
			C244	VCEAAU1AW107Y	100MFD, 10V, +50 -10%	
			C332	VCAAKU1CA104M	.1MFD, 16V, ±20%, Aluminum	
	TRAN	ISFORMERS	C702	VCEAAU1HW105A	1MFD, 50V, +75 -10%	
			C703	VCEAAU1AW108Y	1000MFD, 10 V, $+50 - 10%$	
T1	RCILA0412AFZZ	Antenna	C704	VCEAAU1AW476Y	47MFD, 10V, +50 –10%	
T2	RCILR0304AFZZ	RF	C705	VCEAAU1CW476Y	47MFD, 16V, +50 –10%	
T3	RCILI0157AFZZ	1st-IF (10.695MHz)	C706	VCEAAU1AW477Y	470MFD, 10V, +50 –10%	
T4	RCILI0157AFZZ	1st-IF (10.695MHz)	C801	VCAAKU0XA474M	.47MFD, 6.3V, ±20%,	
T5	RCILI0228AFZZ	2nd-IF (455kHz)	6002		Aluminum	
T6	RCILI0229AFZZ	2nd-IF (455kHz)	C802	VCEAAU1EW335Y	3.3MFD, 25V, +50 -10%	
T7	RCILI0169AFZZ	2nd-IF (455kHz)	C803	VCEAAU1EW335Y	3.3MFD, 25V, +50 –10%	
T8	RCILB0421AFZZ	2nd Local Oscillator	C804	VCEAAU1AW107Y	100MFD, 10V, +50 –10%	
TO.	D CH 10220 + E22	(11.150MHz)	C901	VCSATU1EF105M	1MFD, 25V, ±20%, Tantalu	
T9	RCILI0228AFZZ	2nd-IF (455kHz)	C903	VCEAAU1AW476Y	47MFD, 10V, +50 −10%	
T101	RTRNM0050AFZZ	Output and Modulation				
T201 T202	RCILR3242AAZZ	Tripler (15.360MHz)		CAR	ACITORS	
1202	RCILB3241AAZZ	V.C.O. (Voltage Controlled Oscillator)		CAP	PACITORS	
T203	RCILB0383AFZZ	27MHz Filter	(Unless	otherwise specified capa	citors are 50V, +80 -20%, Cerami	c Type)
T204	RCILB0383AFZZ	27MHz Filter	(Oness)	otherwise specified capa	citors are 30 v, +80 –20 /6, Cerann	l Type.)
T205	RCILR3243AAZZ	16MHz Filter	C1	VCKZPU1HF103Z	.01MFD	
T206	RCILR3243AAZZ	16MHz Filter	C2	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80	
T301	RCILB0383AFZZ	Transmitter, 27MHz Filter	02		-20%, Ceramic	
T302	RCILB0383AFZZ	Transmitter, 27MHz Filter	C3	VCKZPU1HF103Z	.01MFD	
T303	RCILB0221AFZZ	Transmitter, Buffer	C4	VCCSPU1HL271J	270PF, 50V, ±5%, Ceramic	
T304	RCILR0037AFZZ	Transmitter, Driver	C5	VCCSPU1HL220J	22PF, 50V, ±5%, Ceramic	
T601	RTRNC0003AFZZ	Power Choke	C6	VCKYPU1HB103M	.01MFD, 50V, ±20%, Ceramic	
			C7	VCKZPU1HF103Z	.01MFD	
			C8	VCCSPU1HL2R0C	2PF, 50V, ±0.25PF, Ceramic	
	CF	RYSTALS	C9	VCCSPU1HL680J	68PF, 50V, ±5%, Ceramic	
			C10	VCCSPU1HL330J	33PF, 50V, ±5%, Ceramic	
X1	RCRSB0055AFZZ	11.150MHz	C11	VCKYPU1HB103M	.01MFD, 50V, ±20%, Ceramic	
X201	RCRSB0051AFZZ	10.240MHz	C12	VCKZPU1HF103Z	.01MFD	
			C13	VCCSPU1HL5R0C	5PF, 50V, ±0.25PF, Ceramic	
	0.00		C14	VCKZPU1HF103Z	.01MFD	
	CERA	MIC FILTER	C15	VCCSPU1HLR50C	0.5PF, 50V, ±0.25PF, Ceramic	
CEI	DEH 40055 - 225	4551.11	C16	VCQYKU1HM333M	.033MFD, 50V, ±20%, Mylar	
CF1	RFILA0056AFZZ	455kHz	C17	VCKZPU1HF103Z	.01MFD	
			C18	VCKZPU1HF103Z	.01MFD	
	FLECTROLV	TIC CAPACITORS	C19	VCQYKU1HM333M	.033MFD, 50V, ±20%, Mylar	
	ELECTROLY	TIO CAPACITONS	C20 C21	VCVVPULHP472M	.033MFD, 50V, ±20%, Mylar	
C22	VCEAAU1EW335A	3.3MFD, 25V, +75 –10%	(21	VCKYPU1HB472M	.0047MFD, 50V, ±20%,	
C23	VCEAAU1EW335A	3.3MFD, 25V, +75 –10% 3.3MFD, 25V, +75 –10%	C24	VCOVVIIIIMION	Ceramic	
C26	VCAAKU0XA474M	.47MFD, 6.3V, ±20%,	C24	VCQYKU1HM103M	.01MFD, 50V, ±20%, Mylar	
020	TCAAROUAA474M	Aluminum	C23	VCKZPU1HF223Z	.022MFD	
C30	VCEAAU1CW106Y	10MFD, 16V, +50 –10%	C28	VCCSPU1HL330J VCCSPU1HL680J	33PF, 50V, ±5%, Ceramic	
C31	VCEAAU1AW227Y	220MFD, 10V, +50 –10%	C29	VCQYKU1HM333M	68PF, 50V, ±5%, Ceramic	
C37	VCEAAU1CW336Y	33MFD, 16V, +50 –10%	C32	VCCSPU1HL221J	.033MFD, 50V, ±20%, Mylar 220PF, 50V, ±5%, Ceramic	
C39	VCAAKU0XA474M	.47MFD, 6.3V, ±20%,	C32	VCCSPU1HL221J	33PF, 50V, ±5%, Ceramic	
	· January Viller, Till	Aluminum	C34	VCCSPU1HL221J	220PF, 50V, ±5%, Ceramic	
			. 551	. COOL CLIED ED LO	22011, 501, -570, Ceramic	. '

REF. NO.	PART NO.	DESCRIPTION		REF. PART NO.		DESCRIPTION
C35	VCKZPU1HF103Z	.01MFD	C	241	VCCSPU1HL101J	100PF, 50V, ±5%, Ceramic
C36	VCKZPU1HF103Z	.01MFD		243	VCCSPU1HL151J	150PF, 50V, ±5%, Ceramic
C38	VCKZPU1HF103Z	.01MFD				.01MFD, 50V, ±20%, Mylar
C40	VCKZPU1HF103Z	.01MFD		301	VCCSPU1HL330J	33PF, 50V, ±5%, Ceramic
C101	VCKYPU1HB472M	.0047MFD, 50V, ±20%,		302	VCCSPU1HL390J	39PF, 50V, ±5%, Ceramic
		Ceramic		303	VCCSPU1HL390J	39PF, 50V, ±5%, Ceramic
C102	VCKYPU1HB472M	.0047MFD, 50V, ±20%,		304	VCCSPU1HL3R0C	3PF, 50V, ±0.25PF, Ceramic
		Ceramic		305	VCKZPU1HF103Z	.01MFD
C103	VCQYKU1HM223M	.022MFD, 50V, ±20%, Mylar		306	VCKZPU1HF103Z	.01MFD
C104	VCKYPU1HB222M	.0022MFD, 50V, ±20%,		307	VCCSPU1HL151J	150PF, 50V, ±5%, Ceramic
		Ceramic	C	308	VCCSPU1HL4R0C	4PF, 50V, ±0.25PF, Ceramic
C105	VCCSPU1HL271J	270PF, 50V, ±5%, Ceramic		309	VCKZPU1HF103Z	.01MFD
C106	VCQYKU1HM683M	.068MFD, 50V, ±20%, Mylar	C	310	VCCCPU1HH100F	10PF (CH), 50V, ±1PF,
C110	VCCSPU1HL470J	47PF, 50V, ±5%, Ceramic				Ceramic
C111	VCQYKU1HM104M	.1MFD, 50V, ±20%, Mylar	C	311	VCKZPU1HF103Z	.01MFD
C114	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80	C	312	VCCSPU1HL221J	220PF, 50V, ±5%, Ceramic
		-20%, Ceramic	C	313	VCCSPU1HL471J	470PF, 50V, ±5%, Ceramic
C118	VCQYKU1HM333M	.033MFD, 50V, ±20%, Mylar	C	314	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80
C120	RC-KZ1010AFZZ	1000PF, 50V, +80 −20%,				-20%, Ceramic
		Ceramic (Wage Type)	C	316	VCCSPU1HL180J	18PF, 50V, ±5%, Ceramic
C122	VCCSPU1HL680J	68PF, 50V, ±5%, Ceramic	C	317	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80
C123	VCCSPU1HL680J	68PF, 50V, ±5%, Ceramic				-20%, Ceramic
C124	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80	C	318	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80
		-20%, Ceramic				-20%, Ceramic
C125	VCKZPU1HF103Z	.01MFD	C	319	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80
C201	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80				-20%, Ceramic
		-20%, Ceramic	C	320	VCCSPU1HL511J	510PF, 50V, ±5%, Ceramic
C202	VCCCPU1HH330J	33PF (CH), 50V, ±5%, Ceramic	C	321	VCCSPU1HL331J	330PF, 50V, ±5%, Ceramic
C203	RTO-H1009AFZZ	Trimmer Capacitor, 10.240MHz	C	322	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80
		Oscillator				-20%, Ceramic
C204	VCCSPU1HL391J	390PF, 50V, ±5%, Ceramic	C	2323	VCCSPU1HL471J	470PF, 50V, ±5%, Ceramic
C205	VCCSPU1HL151J	150PF, 50V, ±5%, Ceramic		324	VCCSPU1HL271J	270PF, 50V, ±5%, Ceramic
C206	VCCSPU1HL330J	33PF, 50V, ±5%, Ceramic	C	325	VCCSPU1HL391J	390PF, 50V, ±5%, Ceramic
C207	VCQYKU1HM223M	.022MFD, 50V, ±20%, Mylar	C	326	VCCSPU1HL150J	15PF, 50V, ±5%, Ceramic
C208	VCCCPU1HH150J	15PF (CH), 50V, ±5%, Ceramic		330	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80
C209	VCCCPU1HH5R0C	5PF (CH), 50V, ±0.25PF,				-20%, Ceramic
		Ceramic	C	331	VCKZPU1HF103Z	.01MFD
C210	VCCSPU1HL3R0C	3PF, 50V, ±0.25PF, Ceramic	C	333	VCCSPU1HL511J	510PF, 50V, ±5%, Ceramic
C212	VCCCPU1HH470J	47PF (CH), 50V, ±5%, Ceramic	C	334	VCKZPU1HF103Z	.01MFD
C213	VCCUPU1HJ100J	10PF (UJ), 50V, ±5%, Ceramic	C	335	VCCSPU1HL511J	510PF, 50V, ±5%, Ceramic
C214	VCCSPU1HL101J	100PF, 50V, ±5%, Ceramic		336	VCCSPU1HL330J	33PF, 50V, ±5%, Ceramic
C215	VCCSPU1HL101J	100PF, 50V, ±5%, Ceramic		337	VCCSPU1HL221J	220PF, 50V, ±5%, Ceramic
C216	VCCUPU1HJ180J	18PF (UJ), 50V, ±5%, Ceramic	- 1	338	VCCSPU1HL101J	100PF, 50V, ±5%, Ceramic
C217	VCQYKU1HM223M	.022MFD, 50V, ±20%, Mylar		401	VCCSPU1HL151J	150PF, 50V, ±5%, Ceramic
C218	VCKYPU1HB102M	.001MFD, 50V, ±20%, Ceramic	1	402	VCKYPU1SD103Z	.01MFD (Z5T), 30V, +80
C219	VCCSPU1HL101J	100PF, 50V, ±5%, Ceramic				-20%, Ceramic
C220	VCCSPU1HL101J	100PF, 50V, ±5%, Ceramic	C	601	VCKZPU1HF103Z	.01MFD
C221	VCCSPU1HL101J	100PF, 50V, ±5%, Ceramic		604	VCKZPU1HF333P	.033MFD, 50V, +100 -0%,
C222	VCKYPU1HB102M	.001MFD, 50V, ±20%, Ceramic				Ceramic
C223	VCQYKU1HM223M	.022MFD, 50V, ±20%, Mylar	C	605	VCKZPU1HF333P	.033MFD, 50V, +100 -0%,
C224	VCCSPU1HL101J	100PF, 50V, ±5%, Ceramic			,	Ceramic
C226	VCCCPU1HH330J	33PF (CH), 50V, ±5%, Ceramic	C	606,		Feed Through Capacitors with
C227	VCKZPU1HF103Z	.01MFD		607	RC-KZ1009AFZZ	Bracket
C229	VCKZPU1HF103Z	.01MFD		608	VCKZPU1HF103Z	.01MFD
C230	VCCCPU1HH100F	10PF (CH), 50V, ±1PF,	- 1	701	VCQYKU1HM333M	.033MFD, 50V, ±20%, Mylar
		Ceramic	1	710	RC-KZ1010AFZZ	2,001, 201, 201,
C231	VCKZPU1HF103Z	.01MFD		711	RC-KZ1010AFZZ	
C233	VCCRPU1HH390J	39PF (RH), 50V, ±5%, Ceramic		712	RC-KZ1010AFZZ	
C234	VCKZPU1HF103Z	.01MFD		715	RC-KZ1010AFZZ	1000PF, 50V, +80 -20%,
C235	VCCRPU1HH330J	33PF (RH), 50V, ±5%, Ceramic		717	RC-KZ1010AFZZ	Ceramic (Wage Type)
C236	VCKZPU1HF103Z	.01MFD		718	RC-KZ1010AFZZ	Calamie (mage 1) per
C238	VCKYPU1HB102M	.001MFD, 50V, ±20%, Ceramic		719	RC-KZ1010AFZZ	
C239	VCCSPU1HL820J	82PF, 50V, ±5%, Ceramic		721	RC-KZ1010AFZZ	
C240	VCCSPU1HL101J	100PF, 50V, ±5%, Ceramic				
			'			I

REF. NO.	PART NO.	DESCRIPTION	REF. NO.	PART NO.	DESCRIPTION
C722	RC-KZ1010AFZZ		R41	VRD-ST2EE471J	470 ohm
C723	RC-KZ1010AFZZ		R42	VRD-ST2EE563J	56K ohm
C724 C725	RC-KZ1010AFZZ RC-KZ1010AFZZ		R43	RVR-M0146AFZZ	30K (B) ohm, Deepest Point
C725	RC-KZ1010AFZZ	1000PF, 50V, +80 -20%,	R44	VRD-SU2EY683J	Adjust 68K ohm
C727	RC-KZ1010AFZZ	Ceramic (Wage Type)	R45	VRD-SU2EY682J	6.8K ohm
C728	RC-KZ1010AFZZ	Celainie (wage Type)	R102	VRD-ST2EE222J	2.2K ohm
C729	RC-KZ1010AFZZ		R102	VRD-ST2EE470J	47 ohm
C730	RC-KZ1010AFZZ		R106	VRD-ST2EE222J	2.2K ohm
C731	RC-KZ1010AFZZ		R107	VRD-ST2EE222J	2.2K ohm
C902	VCTYPU1EX103M	.01MFD, 25V, ±20%, Ceramic	R108	VRD-ST2EE223J	22K ohm
		, , , , , , , , , , , , , , , , , , , ,	R109	VRD-ST2EE153J	15K ohm
			R110	RVR-M0123AFZZ	1K (B) ohm, Modulation Level
	RESIST	TORS ARRAY			Adjust
DAGGG	1		R112	VRD-SU2EY563J	56K ohm
RM901-	RMPTC1002AAZZ	470 ohm × 3, 1/8W	R140	VRD-ST2HA1R0K	1 ohm, 1/2W, ±10%, Carbon
A ~ C	1		R201	VRD-SS2EY563J	56K ohm
RM902-	RMPTC1001AAZZ	470 ohm x 4, 1/8W	R202	VRD-SS2EY473J	47K ohm
A ~ D	1		R203	VRD-SS2EY152J	1.5K ohm
RM903- A ∼ E	RMPTC0004AFZZ	470 ohm × 5, 1/4W	R205	VRD-SS2EY222J	2.2K ohm
A ~ E RM904-	1		R206	VRD-SS2EY103J	10K ohm
A ~ F	RMPTC1003AAZZ	1.5K ohm × 6, 1/8W	R207	VRD-SS2EY562J	5.6K ohm
$A \sim \Gamma$,		R208 R209	VRD-SS2EY103J	10K ohm
			R210	VRD-SS2EY224J	220K ohm
	RI	ESISTORS	R210	VRD-SS2EY103J	10K ohm
(Unless o		tors are 1/4W, ±5%, Carbon Type).	R211	VRD-SS2EY102J VRD-SS2EY103J	1K ohm 10K ohm
(0111000)	other wise specified resis	tors are 1/4 w, =5 %, Carbon Type).	R214	VRD-SS2E 11033 VRD-SS2E Y561J	560 ohm
R1	VRD-ST2EE472J	4.7K ohm	R215	VRD-SS2EY222J	2.2K ohm
R2	VRD-ST2EE152J	1.5 K ohm	R216	VRD-SS2E12223 VRD-SS2EY331J	330 ohm
R3	VRD-ST2EE102J	1K ohm	R217	VRD-SS2EY683J	68K ohm
R4	VRD-ST2EE222J	2.2K ohm	R219	VRD-SS2EY560J	56 ohm
R5	VRD-ST2EE473J	47K ohm	R220	VRD-SS2EY471J	470 ohm
R6	VRD-ST2EE562J	5.6K ohm	R221	VRD-SS2EY183J	18K ohm
R7	VRD-ST2EE471J	470 ohm	R222	VRD-SS2EY333J	33K ohm
R8	VRD-ST2EE472J	4.7K ohm	R223	VRD-SS2EY102J	1K ohm
R9	VRD-ST2EE333J	33K ohm	R224	VRD-SS2EY680J	68 ohm
R10	VRD-ST2EE681J	680 ohm	R225	VRD-SS2EY561J	560 ohm
R12	VRD-SU2EY223J	22K ohm	R226	VRD-SS2EY471J	470 ohm
R13	VRD-ST2EE472J	4.7K ohm	R227	VRD-SS2EY560J	56 ohm
R14	VRD-ST2EE102J	1K ohm	R228	VRD-SS2EY222J	2.2K ohm
R15	VRD-ST2EE273J	27K ohm	R229	VRD-SS2EY222J	2.2K ohm
R16	VRD-SU2EY562J	5.6K ohm	R 301	VRD-ST2EE123J	12K ohm
R17	VRD-SU2EY102J	1K ohm	R 302	VRD-ST2EE222J	2.2K ohm
R18	VRD-SU2EY102J	1K ohm	R303	VRD-ST2EE221J	220 ohm
R20	VRD-SU2EY224J	220K ohm	R304	VRD-ST2EE223J	22K ohm
R21	VRD-SU2EY333J	33K ohm	R305	VRD-ST2EE470J	47 ohm
R22	VRD-SU2EY223J	22K ohm	R306	VRD-ST2EE332J	3.3K ohm
R23 R24	VRD-ST2EE333J VRD-ST2EE153J	33K ohm 15K ohm	R307	VRD-ST2EE101J	100 ohm
R24 R27	VRD-S12EE153J VRD-SU2EY104J	100K ohm	R308 R309	VRD-ST2EE101J	100 ohm 68 ohm
R28	VRD-SU2EY683J	68K ohm	R310	VRD-ST2EE680J VRD-ST2HA220J	22 ohm, 1/2W, ±5%, Carbon
R29	VRD-SU2EY104J	100K ohm	R310	VRD-ST2HA220J VRD-ST2HA471J	470 ohm, 1/2W, ±5%, Carbon
R30	VRD-SU2BY333J	33K ohm, 1/8W, ±5%, Carbon	R312	VRD-ST2EE332J	3.3K ohm
R31	VRD-SU2EY154J	150K ohm	R314	VRD-ST2EE332J	3.3K ohm
R32	RVR-M0146AFZZ	30K (B) ohm, Signal Meter Adjust	R315	RVR-M0129AFZZ	30K (B) ohm, RF Power Meter Adjust
R34	VRD-ST2EE222J	2.2K ohm	R316	VRD-ST2EY222J	2.2K ohm
R35	VRD-SU2EY222J	2.2K ohm	R516	VRD-ST2HA101K	100 ohm, ½ W, ±10%, Carbon
R36	VRD-ST2EE223J	22K ohm	R517	VRD-ST2HA681K	680 ohm, 1/2W, ±10%, Carbon
R37	VRD-ST2EE472J	4.7K ohm	R518	VRS-PT3DB221K	220 ohm, 2W, ±10%, Oxide
R 38	VRD-ST2EE151J	150 ohm			Film
R39	VRD-ST2EE101J	100 ohm	R701	VRD-ST2EE103J	10K ohm
D40	VRD-SU2EY823J	82K ohm	R702	VRD-ST2EE102J	1K ohm
R40	VKD-502E 10255	0211 01111	R703	THE BILLIONS	IK OIIII

REF. NO.	PART NO.	DESCRIPTION		REF. NO.	PART NO.	DESCRIPTION
R704	VRD-ST2EE104J	100K ohm		13	LCHSS0126AFFW	Chassis, Front, Main Unit
R706	VRD-ST2EE104J	100K ohm			LHLDW3009AFFW	Holder, Microphone Cable
R707	VRD-ST2EE104J	100K ohm		14	LHLDW3057AFFW	Holder, Remote Control Cable
R710	VRD-ST2EE101J	100 ohm				and Memory Cord
R711	VRD-ST2EE471J	470 ohm		15	LX-BZ0237AFFB	Screw, Cabinet, Main Unit
R712	VRD-ST2EE472J	4.7K ohm		16	LX-BZ0248AFZZ	Moulding Screw, $5\phi \times 15$ mm
R713	VRD-ST2EE331J	330 ohm			LX-LZ0001AGZZ	Rivet, Indication Plate of Spec.
R801	VRS-PT3DB470K	47 ohm, 2W, ±10%, Oxide Film			LX-LZ0051AF00	Push Rivet, Nylon, Speaker Unit
R802	VRD-ST2EY102J	1K ohm		17	LX-NZ0123AFFN	Nut, Remote Control Socket
R803	VRD-ST2EY104J	100K ohm				(24 ϕ)
R804	VRD-ST2EY102J	1K ohm			LX-TZ0001AFFE	Self-Tapping Screw (5φ),
R805	VRD-ST2EY331J	330 ohm				Mounting Bracket of Main
R806 R807	VRD-ST2EY104J	100K ohm			LV W22012CEEN	Unit
R808	RVR-M0094AGZZ VRD-ST2EY220J	5K (B) ohm, Meter Sub. Adjust 22 ohm		,	LX-WZ3017CEFN	Shakeproof Lockwasher Exter- nal Type, Main P.C. Board
R809	VRS-PT3AB220K	22 ohm, 1W, ±10%, Oxide			LX-WZ3057AFFN	Washer, Remote Control
11003	TRO I TOADZZOR	Film			LA-WZ5057AFFN	Socket (24 ϕ)
R901	VRD-SC2EF471J	470 ohm			LX-WZ9055AFZZ	Washer (\(\phi 6.5 \)), Speaker Unit,
R902	VRD-SU2EF471J	470 ohm				Plastic
R921	VRD-SU2EF474J	470K ohm			PCOVS1002AAZZ	Cover, P.L.L. Circuit P.C.
R923	VRD-SC2EF561J	560 ohm				Board
R924	RVR-C0001AAZZ	5K (C) ohm, Squelch Control			PCOVU3109AFZZ	Shade Plate, Meter Illumination
R925/	RVR-B0006AAZZ	5K (B) ohm, Volume Control				Lamp
SW903		with OFF-ON Switch			PCOVU8108AFZZ	Cover, Meter Illumination
R926	VRD-SC2EF181J	180 ohm			DEC	Lamp, Rubber
R927	VRD-SU2EF471J	470 ohm			PFLT-0338AF00	Felt, Meter Cabinet
					PFILW0005AFZZ	Film, Channel Indicator
	MISCELLANEOUS				PGUMM0123AF00	LED901, Red Cover, Signal/RF Power Meter, Rubber
01	GCABA1465AFSA	Cabinet, Speaker Side			PGUMS0110AF00	Cushion, P.L.L. Unit, Rubber
02	GCABB1465AFSA	Cabinet, Signal/RF Power Meter Side			PGUMS1001AAZZ	Switch Cover, SW905 and SW906, Rubber
03	GCABA3464AFSA	Cabinet, Main Unit			PHAG-001MAFFC	Microphone Hanger, Small
04	GCABB3464AFFW	Cabinet, Main Unit See Figure 1			PHAG-002MAFFN	Microphone Hanger, Large
05	HINDM1080AFSB	Emblem "SHARP", Signal/RF Power Meter Cabinet	,		PRDAR0144AFFW	Heat Sink, Transistors (Q303 and Q304)
06	HINDM1183AFZZ	Indication Plate, Spec.			PRDAR0145AFFW	Heat Sink, Integrated Circuit
07	HPNLH0008AAZZ	Cabinet, Front, Microphone				IC101
08	HPNLH0010AAZZ	Unit Cabinet, Rear, Microphone			PSLDM3136AFFW	Shield Plate, Wage Type Ceramic Capacitors, Remote P.C.
09	JKNBZ0001AAZZ	Unit Knob, Up and Down (Channel			PSPO-0059AFZZ	Board Sponge, Speaker Unit P.C.
10	JKNBZ0002AAZZ	Selection Switch)		CNP101,		Board
10	JKNDZ0002AAZZ	Knob, Off-On Switch/Volume Control, Squelch Control		CNP101, CNP102,	l .	Connecting Cord with Sockets
11	JKNBZ0003AAZZ	Knob, Press-to-Talk Switch		CNP102, CNP103,		Connecting Cord with Sockets (10-Pin, 14-Pin) and Plugs
	LANGF0407AFFW	Metal Plate, Output/Modulation Transformer, Small (Flat)		CNP104, CNS702,	QCNW-0266AFZZ	(7-Pin, 10-Pin × 2, 5-Pin) Assembly
	LANGQ0545AFFW	Fixing Metal, Remote P.C. Board		CNS704		Plug, 9-Pin
	LANGR0418AFFW	Fixing Metal, Output/Modula-		CNP702	QCNCM1001AGZZ	Plug, 10-Pin
	LANGT0650AFFW	tion Transformer, Large Bracket, Signal/RF Power		CNP704	QCNCM1101AGZZ QCNCM1401AGZZ	Plug, 11-Pin Plug, 14-Pin
	LANCTOCALABRIT	Meter			QCNTZ0071AFZZ	Plug, 1-Pin
1.2	LANGT0651AFFW	Mounting Bracket, Main Unit			QCNCM095BAFZZ	Plug, 2-Pin, Speaker
12	LBRC-0053AFSA	Mounting Bracket Assembly, Speaker Unit			QCNCM0402SGZZ	Plug, 4-Pin, Signal/RF Power Meter
	LBSHZ0051AFZZ	Bushing, Transistor Q304			QCNCM1401AGZZ	Plug, 14-Pin
	LCHSM0264AFFW	Chassis, Main Unit		CNS701,		Remote Control Cable with
	LCHSM0279AFFW	Chassis, Speaker Unit		CNS703,	QCNW-0258AFZZ	Plug (PG801) and Sockets
	LCHSM2082AAZZ	Bracket, P.L.L. Circuit P.C. Board		PG801/ 18		Assembly
		Doard		10	,	

REF. NO.	PART NO.	DESCRIPTION		REF. NO.	PART NO.	DESCRIPTION
CNS801	QCNW-0256AFZZ	Connecting Cord with Socket, Speaker		W901 W902	QSW-P0002AAZZ QSW-P0002AAZZ	Switch, Up (Channel Selection) Switch, Down (Channel
CNS802	QCNW-0257AFZZ	Connecting Cord with Socket, Signal/RF Power Meter		W903/ \	QSW 1000ZMAZZ	Selection) Switch, OFF-ON with Volume
CNS803,	1	Signal/KI Tower Meter		925	RVR-B0006AAZZ	Control (5K-B ohm)
SO801, SO901/	QCNW-0255AFZZ	Microphone Cable with Sockets and Bushing Assembly		W904 W905	QSW-P0003AAZZ	Switch, Press-to-Talk (P.T.T.)
19				w903 W906	QSW-S0005AAZZ QSW-S0005AAZZ	Switch, Channel 9 Preset Switch, ANL (Automatic Noise
	QFS-D201AAGNA	Fuse, 200mA	DI	1 901		Limiter)
	QFS-A232AAFNA QFSHJ9052AFZZ	Fuse, 2.3A Power Supply Cord with Fuse		L801, L802	RLMPM0019AGZZ	Lamp, Meter Illumination
	QI SHOYOUZHI ZZ	Holder and Socket			RMICD0001AAZZ	Dynamic Microphone, 500
	QFSHJ9054AFZZ	Memory Cord (Power Supply)			DMCD00604E27	ohms (at 1kHz)
J101/)		with Fuse Holder and Plug			RMICB0050AFZZ	Remote Control Microphone Unit
20	QJAKA0052AFZZ	Jack, External Speaker	M	E801/	RMTRE0068AFZZ	Meter, Signal/RF Power
	QPWBE0061AAZZ	Printed Circuit Board, Remote	24	1 /		
	QPWBF0052AAZZ	Microphone Circuit Printed Circuit Board, P.L.L.			RTUNS0052AFZZ SPAKA0488AFZZ	P.L.L. Synthesizer Unit Packing Add.
	QFWBF0032AAZZ	Circuit			SPAKC1060AFZZ	Packing Case
	QPWBF0612AFZZ	Printed Circuit Board, Main			SPAKX0162AFZZ	Packing Add., Cushion
	ODWDEO(35 LE33	Circuit			SSAKH0016AGZZ SSAKH0070AGZZ	Polyethylene Bag, Main Unit Polyethylene Bag, Remote
	QPWBF0675AFZZ	Printed Circuit Board, Remote Unit			SSAKH00/0AGZZ	Control Microphone Unit
	QPWBF0676AFZZ	Printed Circuit Board, Speaker			SSAKH0113AGZZ	Polyethylene Bag, Speaker Unit
00201	ODI 070050 1 F77	Unit	CT.	0001	TINSE0528AFZZ	Operation Manual
PG201 PG202	QPLGZ0850AFZZ QPLGZ0850AFZZ	Plug, 8-Pin Plug, 8-Pin	31	P801	VSP0080P-288A XCBSC30P10000	Speaker, 8 ohms, 8cm Screw, Mounting Bracket of
PG601/	OSOCZ2454AFZZ	Plug, Power Supply				Speaker Unit
21	,				XCPSN30P12000	Tapping Screw $(3\phi \times 12\text{mm})$,
PG901	QCNTZ0001AAZZ QSOCE0401AFZZ	Plug, 20-Pin, Microphone Unit Socket, Test Point TP308 and			XWHGZ28-20100	Microphone Unit Rubber Washer, Main P.C.
	QDOCEO-IOTAL ZZ	TP309			7111102220 20100	Board
	QPLGE0403AGZZ	Plug, Test Point TP308 and TP309			MODEL CX-1 (C	optional Extension Cord)
SO401/	QSOCZ2470AFZZ	Socket, Antenna (50 ohms)			OCNW 0261 A F27	Damata Cantral Cable O fact
22 SO701/	1				QCNW-0261AFZZ QFSHJ9055AFZZ	Remote Control Cable, 9-feet DC Main Power Supply Cord
23	QCNW-0254AFZZ	Memory Cord with Socket				with Fuse Holder and 2.3A
SW101-A	-	Relay with Receiver/Trans-	-		000000000000000000000000000000000000000	Fuse and Socket, 14-feet
∼D/ RLY601	RRLYZ0007AFZZ	mitter Switch			QFSHJ9056AFZZ	Extra Power Cord (Memory Cord) with Fuse Holder and
SW701,	1	Dolov with Dower Cwitat				200mA Fuse and Plug, 14-feet
RLY701	RRLYZ0009AGZZ	Relay with Power Switch				