# This Information Is Provided By CBTricks.com <br> <br> Royce 1-601 Series 1 and 3 Service Manual 

 <br> <br> Royce 1-601 Series 1 and 3 Service Manual}

## Liability of damages to any equipment is the sole responsibility of the user! Downloading, viewing, or using any information provided on these pages automatically accepts the user to the terms of this agreement! <br> Modifications are provided for information purposes only! <br> Supporters of CBTricks.com paid for the hosting so you would have this file.

CBTricks.com is a non-commercial personal website was created to help promote the exchange of service, modification, technically oriented information, and historical information aimed at the Citizens Band, GMRS (CB "A" Band), MURS, Amateur Radios and RF Amps.

CBTricks.com is not sponsored by or connected to any Retailer, Radio, Antenna Manufacturer or Amp Manufacturer, or affiliated with any site links shown in the links database. The use of product or company names on my web site is not endorsement of that product or company.

The site is supported with donations from users, friends and selling of the Site Supporters DVD's to cover some of the costs of having this website on the Internet instead of relying on banner ads, pop-up ads, commercial links, etc. Thus I do not accept advertising banners or pop-up/pop-under advertising or other marketing/sales links or gimmicks on my website.

ALL the money from donations is used for CBTricks.com I didn't do all the work to make money (I have a day job). This work was not done for someone else to make money also, for example the ebay CD sellers.

All Trademarks, Logos, and Brand Names are the property of their respective owners. This information is not provided by, or affiliated in any way with any radio or antenna Manufacturers.

Thank you for any support you can give.

# Royce $\square$ 

Model 1-601
SERVICE MANUAL

## 1-601 CIRCUIT DESCRIPTION

## GENERAL

The $1-601$ is designed around a double-sided P.C. board that comprises Royce's "semi-leadless" chassis. The main board circuitry consists of the r.f. and i.f. stages; audio, transmitter modulator and output stages. In addition there is one "modular" board, the oscillator synthesizer circuit. There are two basic versions of the 1-601. Early models utilized a crystal oscillator module for synthesis, later versions incorporated the Gyro-Lock (PLL) module. For purposes of this manual the models will be identified as series 1 and series 3 respectively.

## RF SECTION

Incoming r.f. signals from the antenna jack are applied through T101 to the base of Q 101 (2SC382 series 1, 2SC674 series 2). The input is diode protected against transients. The output of Q 101 is applied to the base of the first mixer 2SC710 ( Q 102 ) as is the 37 MHz output from the oscillator unit (pin 24 series 1 , pin 19 series 3 ). The mixing process provides the first i.f. frequency output ( 10.7 MHz ) which, after passing through the 10.7 MHz filter ( F 101 ), is applied to the input of the second mixer 2SC711 (Q103). The oscillator unit also provides an output at 10.2 MHz to the input of Q 103 (pin 8 series 1, pin 2 series 3). The mixing process then completes conversion to the 455 KHz second i.f. which is then applied to the 455 KHz i.f. filters (F102, F103).
A high degree of selectivity is achieved through the use of the dual i.f. filters, hence no tuned circuits are utilized in the three-stage i.f. strip consisting of 2SC711 (Q 104, 105) 2SA562 (Q106). The output of the detector 1S188 (D102) is then applied through a switchable noise gate (ANL function) to provide audio output to the volume control.

## AUDIO SECTION

The audio signal from the volume control is applied to the first audio preamp Q 109 ( 2 SC372 series 1, 2SC536 series 3). The output of Q109 is applied to a second audio preamp Q301 (2SC735 series 1, 2SD467 series 3), providing the squelch is "off." The output of Q301 feeds the audio driver I.C. TA7062P (Q302) which in turn drives the primary of driver transformer ETT-1001 (T2). The output is a push-pull stage consisting of T2 secondary, the audio output (and modulator) transistors Q303, 304 (2SC1173 series 1, 2SD330 series 3), and the modulation and output transformer ETT20015 (T1). In the receive mode, the audio output secondary of T1 drives the speaker via the switching relay NS2-PDC12V (RL 1-2).

## MODULATOR SECTION

The modulator section begins at the microphone input jack. In the transmit mode (pin 3 grounded at mic jack), the switching relay will be activated. The audio input (pin 1 mic jack) is applied to the base of the mic preamp 0205 (2SC372 series 1, 2SC536 series 3). The signal then follows a similar progression from Q301 on through to the output as outlined in the AUDIO SECTION preceding, with two exceptions. The aduio output winding is disconnected, and the output of the modulation transformer is applied to the transmitter driver and output stages. A negative feedback signal is developed by the "automatic modulation control" circuit from the modulation stage output. Modulation peaks in the output cause A.M.C. amplifier Q204 (2SA562 series 1, 2SB561 series 3) to conduct, thus limiting the audio input level. Threshold of the circuit is controlled by the 10K ohm mini-potentiometer VR2O1.

## TRANSMITTER SECTION

The transmitter section is conventional and straightforward in design. The oscillator unit provides a 27 MHz signal (pin 10 series 1 , pin 23 series 3) to the input of the predriver 2 SC710 (Q201). Class A operation is employed in the Q201 drives the r.f. driver 2SC1018 (Q202) which in turn drives the r.f. final 2SC756 (O203). Both the driver and final are operated class B. The output circuitry comprises a pi-loading, and low pass filter network. Associated circuitry consists of a tap on the r.f. output, rectified by D201 to provide a signal for the r.f. meter, and the transmit modulation indicator amplifier (Q206).

## SQUELCH - AGC

The A.G.C. amplifier Q 108 (2SC372 series 1, 2SC536 series 3) operates on signals supplied by the detector output. The A.G.C. output is applied to the base of Q 102 and Q104. The A.G.C. output also serves as a source for the squelch circuit transistor Q 107 (2SC372 series 1, 2SC536 series 3) which, when operational, biases Q 109 off.



FIG. 2


FIG. 3


FIG. 4

## BLOCK DIAGRAM



## I-60| Voltage Chart Series 1

|  |  |  | RX | TX |
| :---: | :---: | :---: | :---: | :---: |
| Q101 | 2SC382GR | Vb | 2.2 V |  |
|  |  | Vc | 7.4V |  |
|  |  | Ve | 1.5 V |  |
| Q102 | 2SC710C | Vb | 1.2 V |  |
|  |  | Vc | 8.3 V |  |
|  |  | Ve | 0.8V |  |
| Q103 | 2SC711E | Vb | 0.7 V |  |
|  |  | Vc | 4.5 V |  |
|  |  | Ve | OV |  |
| Q104 | 2SC711E | Vb | 1.2 V |  |
|  |  | Vc | 2.6 V |  |
|  |  | Ve | 0.6 V |  |
| Q105 | 2SC711D | Vb | 0.7 V |  |
|  |  | Vc | 4.6 V |  |
|  |  | Ve | OV |  |
| 0106 | 2SA562Y | Vb | 4.6 V |  |
|  |  | Vc | OV |  |
|  |  | Ve | 5.3 V |  |
| 0107 | 2SC372Y | Vb (NO SQUELCH) | OV |  |
|  |  | (SQUELCH) | 0.7V |  |
|  |  | Vc (NO SQUELCH) | 7.0V |  |
|  |  | (SQUELCH) | 0.1 V |  |
|  |  | Ve (NO SQUELCH) | OV |  |
|  |  | (SQUELCH) | OV |  |
| 0108 | 2SC372Y | Vb | 2.6 V |  |
|  |  | Vc | 9.0 V |  |
|  |  | Ve | 2.0 V |  |
| 0109 | 2SC372Y | Vb (NO SQUELCH) | 1.0 V |  |
|  |  | (SQUELCH) | OV |  |
|  |  | Vc (NO SQUELCH) | 6.0 V | 5.0 V |
|  |  | (SQUELCH) | 8.8 V |  |
|  |  | Ve (NO SQUELCH) | 0.4 V |  |
|  |  | (SQUELCH) | OV |  |
| 0110 | 2SC735Y | Vb | 0.8 V |  |
|  |  | Vc | 0.3 V |  |
|  |  | Ve | OV |  |


|  |  |  | RX | TX |
| :---: | :---: | :---: | :---: | :---: |
| Q201 | 2SC710C | Vb |  | 1.8 V |
|  |  | Vc |  | 13.6 V |
|  |  | Ve |  | 1.4 V |
| 0202 | 2SC1018 | Vb |  |  |
|  |  | Vc |  | 12.4 V |
|  |  | Ve |  |  |
| Q203 | 2SC756A | Vb |  |  |
|  |  | Vc |  | 12.4 V |
|  |  | Ve |  |  |
| Q204 | 2SA562Y | Vb |  |  |
|  |  | Vc |  |  |
|  |  | Ve |  | OV |
| 0205 | 2SC372Y | Vb | 4.4 V | 4.4 V |
|  |  | Vc | 6.0 V | 5.0 V |
|  |  | Ve | 9.0 V | 3.9 V |
| Q206 | 2SC735Y | Vb |  | 2.0 V |
|  |  | Vc |  |  |
|  |  | Ve |  | OV |
| Q301 | 2SC735Y | Vb | 6.0 V | 5.0 V |
|  |  | Vc | 11.0 V | 11.0 V |
|  |  | Ve | 4.7 V | 3.9 V |
| Q302 | TA7062P | (1) | 0.8 V | 0.8 V |
|  |  | (2) | 0.2 V | 0.2 V |
|  |  | (3) | OV | OV |
|  |  | (4) | 12.2 V | 12.2 V |
|  |  | (5) | 11.8 V | 11.8 V |
| Q303 | 2SC1173 | Vb | 0.7 V | 0.7 V |
| Q304 |  | Vc | 13.7V | 13.7V |
|  |  | Ve | 0.1 V | 0.1 V |



PARTS LAYOUT
BACKVIEW 1-601 (Series 1)






- 12C -



## 1-601 PARTS LIST

Crystal Oscillator Parts List

Ref. \#
Q1-O4
D1-D14
D15

L1
L2
T1
T2
T3
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C 14
C15
C16
C17
C18
C19
C20
C2 1
R1-R10
R11
R12
R13
R14
R15
R16
R17
R19
R20
R21,22,24
R23
R25
R26,27,28,29
R30

Description Part \# Semiconductors
2SC710 Transistor
MC301 Diode
ITT301 Varactor
Coils - Inductors
Choke (LF4-100K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-0074
Choke (15uH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $2-0170$
r.f. Transformer (819-50L/23579) . . . . . . . . . . . . . . . . . . . . . . . . 2-0175
r.f. Transformer (819-50L/23579) . . . . . . . . . . . . . . . . . . . . . . . . 2-0175
r.f. Transformer (820-50L/23578) . . . . . . . . . . . . . . . . . . . . . . . . 2-0176

Capacitors
15pF
30pF
15pF
51pF
$001 \mu \mathrm{~F}$
39pF
300pF
15pF
39pF
100pF
$.001 \mu \mathrm{~F}$
120pF
120pF
3pF
$.001 \mu \mathrm{~F}$
$.001 \mu \mathrm{~F}$
$.001 \mu \mathrm{~F}$
300 pF
10pF
51 pF
$.001 \mu \mathrm{~F}$
Resistors (All $1 / 4 \mathrm{w}$ 5\%)
5. 1 K
5. 1 K

2K
5. 1 K

10K
15K
5. 1 K

1 K
10K
$510 \Omega$
5. 1 K
2.7K
5. 1 K

51K
1K

## Crystals (in MHz)

| 10.140 | 10.595 |
| :--- | :--- |
| 10.160 | 10.615 |
| 10.170 | 10.625 |
| 10.180 | 10.635 |

37.600
37.650
37.700
37.750
37.800
37.850

## CRYSTAL FREQUENCY CHART

| (A) | Group 6 pcs. | (B) Group 4 pcs. (Transmittig) |  |  | (C) Group 4 pcs. (Receiving) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{X}^{1}$ | 37.60 MHz | $\mathrm{X}^{7}$ | 10.635 | MHz | $\mathrm{X}^{11}$ | 10.18 | MHz |
| $\mathrm{X}^{2}$ | 37.65 MHz | $\mathrm{X}^{8}$ | 10.625 | MHz | $\mathrm{X}^{12}$ | 10.17 | MHz |
| $\mathrm{X}^{3}$ | 37.70 MHz | $\mathrm{X}^{9}$ | 10.615 | MHz | $\mathrm{X}^{13}$ | 10.16 | MHz |
| $\mathrm{X}^{4}$ | 37.75 MHz | $\mathrm{X}^{10}$ | 10.595 | MHz | $\mathrm{X}^{14}$ | 10.14 | MHz |
| $\mathrm{X}^{5}$ | 37.80 MHz |  |  |  |  |  |  |
| $\mathrm{X}^{6}$ | 37.85 MHz |  |  |  |  |  |  |

## CHANNEL <br> FREQUENCY(MHz)

COMBINATION
(Transmit)

COMBINATION
(Receive)

| 1. | 26.965 |
| ---: | ---: |
| 2. | 26.975 |
| 3. | 26.985 |
| 4. | 27.005 |
| 5. | 27.015 |
| 6. | 27.025 |
| 7. | 27.035 |
| 8. | 27.055 |
| 9. | 27.065 |
| 10. | 27.075 |
| 11. | 27.085 |
| 12. | 27.105 |
| 13. | 27.115 |
| 14. | 27.125 |
| 15. | 27.135 |
| 16. | 27.155 |
| 17. | 27.165 |
| 18. | 27.175 |
| 19. | 27.185 |
| 20. | 27.205 |
| 21. | 27.215 |
| 22. | 27.225 |
| 23. | 27.255 |

$X^{1}-X^{7}$
$X^{1}-X^{8}$
$X^{1}-X^{9}$
$X^{1}-X^{10}$
$X^{2}-X^{7}$
$X^{2}-X^{8}$
$X^{2}-X^{9}$
$X^{2}-X^{10}$
$X^{3}-X^{7}$
$X^{3}-X^{8}$
$X^{3}-X^{9}$
$X^{3}-X^{10}$
$X^{4}-X^{7}$
$X^{4}-X^{8}$
$X^{4}-X^{9}$
$X^{4}-X^{10}$
$X^{5}-X^{7}$
$X^{5}-X^{8}$
$X^{5}-X^{9}$
$X^{5}-X^{10}$
$X^{6}-X^{7}$
$X^{6}-X^{8}$
$X^{1}-X^{11}$
$\mathrm{X}^{1}-\mathrm{X}^{12}$
$X^{1}-X^{13}$
$X^{1}-X^{14}$
$X^{2}-X^{11}$
$X^{2}-X^{12}$
$X^{2}-X^{13}$
$X^{2}-X^{14}$
$X^{3}-X^{11}$
$X^{3}-X^{12}$
$X^{3}-X^{13}$
$X^{3}-X^{14}$
$X^{4}-X^{11}$
$X^{4}-X^{12}$
$X^{4}-X^{13}$
$X^{4}-X^{14}$
$X^{5}-X^{11}$
$X^{5}-X^{12}$
$X^{5}-X^{13}$
$X^{5}-X^{14}$
$X^{6}-X^{11}$
$X^{6}-X^{12}$
$X^{6}-X^{14}$

## WIRING DIAGRAM

## 1-601 (Series 1)



## I-60I Alignment Instruction

## RECEIVER

A. Inject at the ant. jack a 27.115 MHz signal ( $\pm .002 \% ; 30 \%$ modulation at 1 KHz ).
B. Connect an audio voltmeter and oscilloscope across on 8 ohm load and plug into external speaker jack.

| Test Equipment | Test Point | Adjust | Remarks |
| :--- | :--- | :--- | :--- |
| 1. RF signal genera- <br> tor (low range to <br> avoid audio <br> saturation) | Inject at ant. <br> jack | channel <br> sel to 13 |  |
|  |  | T-101, <br> T-102, | Max. output with vol. control at max, <br> squelch control at min. output should <br> be more than 500mw (2.0v/8 ohm) <br> with gen. voltage at 1uV; S \& N/N $=$ <br> more than 10dB on all channels |

## AGC RESPONSE

Set the output voltage of a signal generator at 50000 uV and adjust the volume control so that the voltmeter output is $500 \mathrm{~mW}(2.0 \mathrm{v} / 8 \mathrm{ohms})$. Then, lower the output voltage of the generator so that the voltmeter output is 10 dB down. The output voltage of the signal generator should be under 5 uV at this time.

## SQUELCH

Set squelch control to maximum. Set signal generator to 500 uV , and adjust VR103 so that squelch opens at 500 uV signal level.

## S-METER ADJUSTMENT

A. Set RF signal generator to 100 uV . Adjust VR104 until meter indicates " $\mathrm{S}-9$ ".

## DELTA TUNE

A. Set the output voltage of a signal generator at 1 uV .
B. Set the Delta Tune control at the center and the squclch control at minimum.
C. Set the Volume Control so that 500 mW may be attained on the voltmeter output. Then, with the Delta Tune control at the " + " side, vary the frequencies of the signal generator until the maximum voltmeter output is attained. Read the frequency variance of the signal generator. Do the same thing for the "-" side. Ascertain that the frequency variation is within $\pm 1 \mathrm{KHz}$ to 2 KHz .

## AUDIO POWER CHECK

With a generator output of 1 mV and squelch control at minimum, audio output should be more than $4 \mathrm{w}(5.7 \mathrm{v} / 8 \mathrm{ohm})$ at maximum position of volume control.

## TRANSMITTER

A. Power Supply -13.8 VDC.
B. Use a suitable power meter, non-inductive dummy load and oscilloscope connected to antenna jack.

| Test Equipment | Test Point | Adjust | Remarks |
| :--- | :--- | :--- | :--- |
| 1. Power Meter | antenna jack | T-201, <br> T-202, <br> L-203, <br> L-204 | Adjust for maximum output power. |
| 2. Freq. Counter | across dummy <br> load | - | Check all channels $\pm 800 \mathrm{~Hz}$ |
| 3. A.F. Oscillator <br> with AF voltmeter <br> in shunt <br> (1KHz 10 mV ) | Inject at mic <br> input | VR-201 | $-90 \%$ modulation on oscilloscope |
|  |  | - | Reduce AF oscillator output to 5 mV ; <br> modulation $\geq 50 \%$ |

C. With 0\% modulation and carrier power 3.5 to 4 Watts, adjust VR202 until meter reads between S9 and S10.

1-601 Series 3

## BLOCK DIAGRAM



|  |  |  | RX | TX |
| :---: | :---: | :---: | :---: | :---: |
| Q101 | 2SC674 | Vb | 1.0 V |  |
|  |  | Vc | 6.6 V |  |
|  |  | Ve | 1.6 V |  |
| Q102 | 2SC710C | Vb | 0.8 V |  |
|  |  | Vc | 8.3 V |  |
|  |  | Ve | 0.6 V |  |
| 0103 | 2SC711E | Vb | 0.2 V |  |
|  |  | Vc | 3.7 V |  |
|  |  | Ve | OV |  |
| Q104 | 2SC711E | Vb | 0.8V |  |
|  |  | Vc | 2.0 V |  |
|  |  | Ve | 0.6 V |  |
| Q105 | 2SC711E | Vb | 0.7 V |  |
|  |  | Vc | 5.0 V |  |
|  |  | Ve | OV |  |
| Q106 | 2SA562Y | Vb | 5.0 V |  |
|  |  | Vc | OV |  |
|  |  | Ve | 6.4V |  |
| 0107 | 2SC536 | Vb (NO SQUELCH) | OV |  |
|  |  | (SQUELCH) | 0.7V |  |
|  |  | Vc (NO SQUELCH) | 3.3 V |  |
|  |  | (SQUELCH) | 0.7 V |  |
|  |  | Ve(NO SQUELCH) | OV |  |
|  |  | (SQUELCH) | OV |  |
| Q108 | 2 SC 536 | Vb | 0.7 V |  |
|  |  | Vc | 8.8 V |  |
|  |  | Ve | 2.1 V |  |
| Q109 | 2SC372Y | Vb (NO SQUELCH) | 0.6 V |  |
|  |  | (SQUELCH) | OV |  |
|  |  | Vc(NO SQUELCH) | 3.9 V |  |
|  |  | (SQUELCH) | 6.1 V | 4.3 V |
|  |  | Ve(NO SQUELCH) | 0.4 V |  |
|  |  | (SQUELCH) | OV |  |
| Q110 | 2SD467 | Vb | 0.7 V |  |
|  |  | Vc | 0.5 V |  |
|  |  | Ve | OV |  |


|  |  |  | RX | TX |
| :---: | :---: | :---: | :---: | :---: |
| Q201 | 2SC710C | Vb |  | 1.4 V |
|  |  | Vc |  | 13.4 V |
|  |  | Ve |  | 1.2 V |
| 0202 | 2SC1018 | Vb |  |  |
|  |  | Vc |  | 12.0 V |
|  |  | Ve |  |  |
| Q203 | 2SC756A | Vb |  |  |
|  |  | Vc |  | 12.0 V |
|  |  | Ve |  |  |
| Q204 | 2SA562Y | Vb |  |  |
|  |  | Vc |  |  |
|  |  | Ve |  | OV |
| Q205 | 2SC536 | Vb | 0.8 V | 0.4 V |
|  |  | Vc | 3.9 V | 4.3 V |
|  |  | Ve | 6.6 V | 2.5 V |
| Q206 | 2SC735Y | Vb |  | 0.7 V |
|  |  | Vc |  | 0.9 V |
|  |  | Ve |  | OV |
| Q301 | 2SD467 | Vb | 5.0 V | 4.6 V |
|  |  | Vc | 11.0 V | 11.0 V |
|  |  | Ve | 4.8 V | 4.6 V |
| Q302 | TA7062P | (1) | 0.7 V | 0.7 V |
|  |  | (2) | 0.1 V | 0.1 V |
|  |  | (3) | OV | OV |
|  |  | (4) | 11.8 V | 11.8 V |
|  |  | (5) | 11.4 V | 11.4 V |
| Q303 | 2SC1173 | Vb | 0.7 V | 0.7 V |
| Q304 |  | Vc | 13.1 V | 13.1 V |
|  |  | Ve | 0.1 V | 0.1 V |

## PARTS LAYOUT (TOP VIEW)



## PARTS LAYOUT (BACK VIEW)



## I-60I Alignment Instruction

## RECEIVER

A. Inject at the ant. jack a 27.115 MHz signal ( $\pm .002 \% ; 30 \%$ modulation at 1 KHz ).
B. Connect an audio voltmeter and oscilloscope across on 8 ohm load and plug into external speaker jack.

| Test Equipment | Test Point | Adjust | Remarks |
| :--- | :--- | :--- | :--- |
| 1. RF signal genera- <br> tor (low range to <br> avoid audio <br> saturation) | Inject at ant. <br> jack | channel <br> sel to 13 |  |
|  |  | $\mathrm{T}-101$, <br> $\mathrm{T}-102$, <br> $\mathrm{T}-103$ | Max. output with vol. control at max, <br> squelch control at min. output should <br> be more than 500mw (2.0v/8 ohm) <br> with gen. voltage at $1 \mathrm{uV} ; \mathrm{S} \& \mathrm{~N} / \mathrm{N}=$ <br> more than 10dB on all channels |

## AGC RESPONSE

Set the output voltage of a signal generator at 50000 uV and adjust the volume control so that the voltmeter output is $500 \mathrm{~mW}(2.0 \mathrm{v} / 8$ ohms $)$. Then, lower the output voltage of the generator so that the voltmeter output is 10 dB down. The output voltage of the signal generator should be under 5 uV at this time.

## SQUELCH

Set squelch control to maximum. Set signal generator to 500 uV , and adjust VR103 so that squelch opens at 500 uV signal level.

## S-METER ADJUSTMENT

A. Set RF signal generator to $100 u \mathrm{~V}$. Adjust VR104 until meter indicates "S-9".

## DELTA TUNE

A. Set the output voltage of a signal generator at 1 uV .
B. Set the Delta Tune control at the center and the squclch control at minimum.
C. Set the Volume Control so that 500 mW may be attained on the voltmeter output. Then, with the Delta Tune control at the " + " side, vary the frequencies of the signal generator until the maximum voltmeter output is attained. Read the frequency variance of the signal generator. Do the same thing for the "-" side. Ascertain that the frequency variation is within $\pm 1 \mathrm{KHz}$ to 2 KHz .

## AUDIO POWER CHECK

With a generator output of 1 mV and squelch control at minimum, audio output should be more than $4 \mathrm{w}(5.7 \mathrm{v} / 8 \mathrm{ohm})$ at maximum position of volume control.

## TRANSMITTER

A. Power Supply -13.8 VDC.
B. Use a suitable power meter, non-inductive dummy load and oscilloscope connected to antenna jack.

| Test Equipment | Test Point | Adjust | Remarks |
| :--- | :--- | :--- | :--- |
| 1. Power Meter | antenna jack | T-201, <br> T-202, <br> L-203, <br> L-204 | Adjust for maximum output power. |
| 2. Freq. Counter | across dummy <br> load | - | Check all channels $\pm 800 \mathrm{~Hz}$ |
| 3. A.F. Oscillator <br> with AF voltmeter <br> in shunt <br> $(1 \mathrm{KHz} 10 \mathrm{mV})$ | Inject at mic <br> input | VR-201 | $-90 \%$ modulation on oscilloscope |
|  |  | - | Reduce AF oscillator output to 5 mV ; <br> modulation $250 \%$ |

C. With $0 \%$ modulation and carrier power 3.5 to 4 Watts, adjust VR2O2 until meter reads between S9 and S10.

## SPECIFICATIONS

## GENERAL

1. Semiconductors
2. Frequency Range
3. Mode of Operation
4. Controls
5. Connectors and Jacks
6. Speaker
7. Microphone
8. Power Supply
9. Dimensions
10. Weight
: 21 Transistors, 13 Diodes and 1 IC
$: 26.965 \mathrm{MHz}-27.255 \mathrm{MHz}$
: AM
: Volume Control with power on-off switch
: Variable Squelch Control
: Delta Tune Control
: Channel Selector Switch
: CB-PA Switch
: ANL Switch
: TONE Switch
: Microphone Connector
: Coaxial type Antenna Connector
: Public Address Speaker Jack 3.5 MM
: External Speaker Jack 3.5 MM
: 3-1/2 inches, 8 ohms
: Dynamic Microphone (500 ohms)
: 13.8 VDC Positive or Negative Ground
: $7-1 / 16^{\prime \prime}(W) \times 2-5 / 32^{\prime \prime}(H) \times 8-1 / 32^{\prime \prime}(D)$
: 3 LBS. 13 OZ .

## RECEIVER

1. Sensitivity at $S / N \quad 10 \mathrm{~dB}: 0.5 \mathrm{uV}$ Typical
2. Adjacent Channel Selectivity : More than 80dB
3. AGC Figure of Range : 80 dB
4. Squelch Range
5. Audio Output Power
6. Distortion at input 100 uV
7. Audio Freqency Response
8. Supurious Response
9. IF Frequency
10. Current Drain no audio
: 0.5 uV - 500 uV
: 4 Watts
: 6 \%
: 400-2000 Hz
: More than 45 dB supurious signal is required to produce the same amount of audio output as the desired receive signal.
: 1st...10.595-10.635 MHz 2nd... 455 KHz
: 250 mA

## TRANSMITTER

| 1. RF Output Power | $: 4$ Watts |
| :--- | :--- |
| 2. Modulation Capability | $:$ Up to $98 \%$ |
| 3. Harmonic Suppression | $:$ More than 50 dB |
| 4. Current Drain | $: 1200 \mathrm{~mA}$ |

## 1-601 PARTS LIST

| REF. \# | DESCRIPTION | PART \# |
| :---: | :---: | :---: |
| Q 101 | 2SC382/2SC674 transistor | Where Part Numbers not |
| Q 102 | 2SC710 transistor | given, order by MODEL |
| Q 103 | 2SC711 transistor | and DESCRIPTION |
| Q 104 | 2SC711 transistor |  |
| Q 105 | 2SC711 transistor |  |
| Q 106 | 2SA562/2SA673 transistor |  |
| Q 107 | 2SC372/2SC536 transistor |  |
| Q 108 | 2SC372/2SC536 transistor |  |
| Q 109 | 2SC372/2SC536 transistor |  |
| Q110 | 2SC735/2SD467 transistor |  |
| Q201 | 2SC710 transistor |  |
| Q202 | 2SC1018 transistor |  |
| Q203 | 2SC756 transistor |  |
| Q204 | 2SA562/2SB561 transistor |  |
| Q205 | 2SC372/2SC536 transistor |  |
| Q206 | 2SC735/2SD467 transistor |  |
| Q301 | 2SC735/2SD467 transistor |  |
| Q302 | TA7062P I.C. |  |
| Q303, 304 | 2SC1173/2SD330 transistor |  |
| D101 | WG713/10D-1 diode |  |
| D102 | 1S188 diode |  |
| D103 | 1S188 diode |  |
| D104 | 10D-1 diode (Series 3) |  |
| D105 | 1S1588 diode (Series 3) |  |
| D106 | 1S2075K diode |  |
| D107 | HV-46 diode |  |
| D108 | 1S188 diode |  |
| D201 | 1S188 diode |  |
| D202 | SR1K-2/10D-1 diode |  |
| D203 | SR1K-2/10D-1 diode |  |
| D301 | SV-9 diode |  |
| D302 | SR1K-2/10D-1 diode |  |
| D303 | SR1K-2/10D-1 diode |  |
| D304 | EQB01-09 diode (zener) |  |
|  | COILS - INDUCTORS |  |
| L101 | r.f. coil (49169) | 2-0162 |
| L201 | r.f. coil (49170) | 2-0166 |
| L202 | r.f. coil (4056) | 2-0169 |
| L203 | r.f. coil (49168) | 2-0163 |
| L204 | r.f. coil (49166) | 2-0164 |
| L301 | choke (LF5-223K) | 2-0165 |
| T101 | r.f. transformer (15089) | 2-0049 |
| T102 | r.f. transformer (15061) | 2-0045 |
| T103 | r.f. transformer (15090) | 2-0050 |
| T201 | r.f. transformer (20105) | 2-0062 |
| T202 | r.f. transformer (49167) | 2-0161 |
| T1 | modulation transformer (20015) | 2-0032 |
| T2 | driver transformer (1001) | 2-0033 |
| T3 | choke (1002) | 2-0030 |


| REF. \# | DESCRIPTION | PART \# |
| :---: | :---: | :---: |
|  | CONTROLS |  |
| VR101 | volume control (50K) |  |
| VR102 | squelch control (10K) |  |
| VR103 | semi-fixed resistor (5K) |  |
| VR104 | semi-fixed resistor (20K) |  |
| VR105 | delta-tune control (10K) |  |
| VR201 | semi-fixed resistor (10K) |  |
| VR202 | semi-fixed resistor (50K) |  |
|  | channel switch (Series 1) |  |
|  | channel switch (Series 3) |  |
|  | ANL/TONE switch |  |
|  | PA/CB switch |  |
|  | CASE PARTS |  |
|  | case, top | 15-12101 |
|  | case, bottom | 15-12102 |
|  | front panel | 15-12301 |
|  | channel knob w/disc | 15-12701 |
|  | volume knob | 15-12702 |
|  | push knob (white) | 15-12703 |
|  | RESISTORS/CAPACITORS |  |
|  | Refer to schematic for specific values |  |
|  | MISCELLANEOUS |  |
|  | D.C. jack |  |
|  | D.C. cord |  |
|  | S/RF meter |  |
|  | relay |  |
|  | x-tol oscillator unit |  |
|  | PLL oscillator unit |  |
|  | speaker |  |
|  | external spkr/PA jack |  |
|  | 10.7 MHz i.f. filter ( $10.7 \mathrm{MF}-\mathrm{B}$ ) |  |
|  | 455 KHz i.f. filter (CFU 455H) |  |
|  | mounting bracket |  |
|  | mic hanger |  |
|  | microphone (complete) |  |

## 1-601 Service Notes:

1. Engineering evaluation indicates many failures are due to poor eyelet contact. It is suggested that jumper wires be utilized through the eyelet contacts and soldered to both sides as opposed to only resoldering.
2. The PLL oscillator unit in the series 3 models is not designed as a field-serviceable unit, so please do not attempt repair as parts will not be made available. Please return defective modules for replacement.
