This Information Is Provided By **CBTricks.com**

Realistic TRC-479 (21-1519)

Liability of damages to any equipment is the sole responsibility of the user! Downloading, viewing, or using any information provided on these pages automatically accepts the user to the terms of this agreement!

Modifications are provided for information purposes only!

Supporters of CBTricks.com paid for the hosting so you would have this file.

CBTricks.com is a non-commercial personal website was created to help promote the exchange of service, modification, technically oriented information, and historical information aimed at the Citizens Band, GMRS (CB "A" Band), MURS, Amateur Radios and RF Amps.

CBTricks.com is not sponsored by or connected to any Retailer, Radio, Antenna Manufacturer or Amp Manufacturer, or affiliated with any site links shown in the links database. The use of product or company names on my web site is not endorsement of that product or company.

The site is supported with donations from users, friends and selling of the Site Supporters DVD's to cover some of the costs of having this website on the Internet instead of relying on banner ads, pop-up ads, commercial links, etc. Thus I do not accept advertising banners or pop-up/pop-under advertising or other marketing/sales links or gimmicks on my website.

ALL the money from donations is used for CBTricks.com I didn't do all the work to make money (I have a day job). This work was not done for someone else to make money also, for example the ebay CD sellers.

All Trademarks, Logos, and Brand Names are the property of their respective owners. This information is not provided by, or affiliated in any way with any radio or antenna Manufacturers. Thank you for any support you can give.

> For information on how to Support CBTricks.com http://www.cbtricks.com/support/

Service Manual

21-1519

TRC-479 40-CHANNEL CB TRANSCEIVER Catalog Number: 21-1519

CONTENTS

Pa	age
Specifications	2
Block Diagram	4
Circuit Description	5
Frequencies Generated and Mixed to Obtain Each Channel	7
Alignment Procedures	8
Printed Circuit Board (Top and Bottom Views/Wiring Diagram)	
Troubleshooting	
Electrical Parts List	18
Exploded View/Disassembly Instructions	-27
Exploded View Parts List	-28
C and Transistor Lead Identification and IC Internal Diagram	
C and Transistor Voltage Chart	-34
Schematic Diagram	-35

© 1991 Tandy Corporation. All Rights Reserved. Realistic is a registered trademark used by Tandy Corporation.

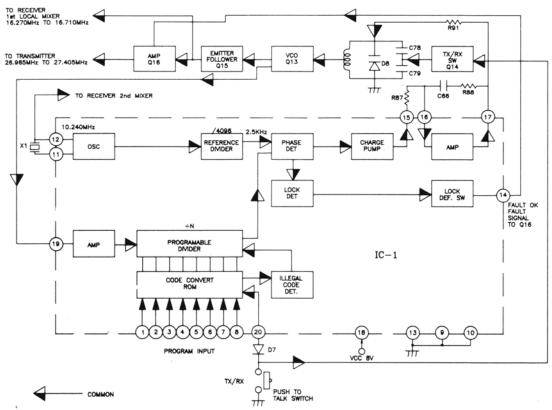
SPECIFICATIONS

General

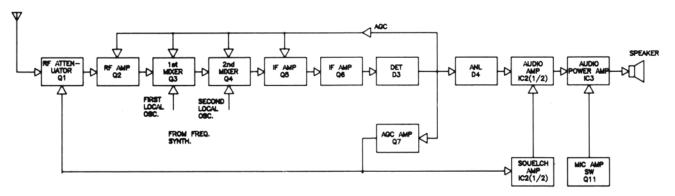
Transmitter	Crystal controlled PLL synthesizer, amplitude modulation
Receiver	Crystal controlled double conversion, superheterodyne system
Communication frequencies	All 40 CB channels (26.965 to 27.405 MHz)
Voltage operation	12 – 16V DC (negative ground vehicles)
Temperature and humidity range	22° F to +140° F (-30° C to +60° C) and 10% to 90%
Transmitter/Receiver switching	Electrical

Standard Test Conditions

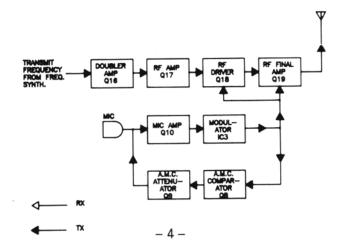
Power supply voltage	13.8V DC
Signal input level	1000μV
Modulation frequency and modulation percentage	1000Hz, 30%
Receiver output power	500mW at external SP
Receiver output load impedance	8 ohms, non-inductive
Antenna load impedance of transmitter/receiver	50 ohms, non-inductive
Measuring channel	18
Ambient conditions	
Temperature	77° F (25° C)
Humidity	40 to 70% RH


Transmitter	Unit	Nominal	Limit
Frequency tolerance at 77 ° F (25° C)	Hz	± 100	± 1300
(5 minutes after switch on)			
Carrier power at no modulation	W	3.9	3.6 – 4.4
Modulation attack time	m sec.	18	25
Modulation release time	m sec.	300	$\textbf{300} \pm \textbf{200}$
Modulation distortion at 1 kHz 80% modulation	%	3	6
Spurious emission 2nd/3rd/4th/5th/6th	dB	- 70	- 60
7th/8th/9th/10th			
Modulation 100% capability	%	90	80
positive/negative			
Current drain at no modulation	mA	1100	1300
at 80% modulation	mA	1500	2000
Modulation frequency response (1 kHz 0dB reference)			
lower at 450 Hz, EIA	dB	- 6	-6 ± 3
upper at 2.5 kHz, EIA	dB	- 6	-6 ± 3
Carrier power uniformity CH to CH	W	0.2	0.5
at no modulation			
Microphone sensitivity AM for 50% modulation	mV	1.0	2.0
AMC range between 50 to 100% modulation	dB	40	30
Occupied band width \pm 5.0 kHz	dB	- 35	- 26
± 7.5 kHz	dB	- 35	- 26
± 10.0 kHz	dB	- 45	- 35
± 12.5 kHz	dB	- 45	- 35
± 15.0 kHz	dB	- 45	- 35
± 17.5 kHz	dB	- 45	- 35
\pm 20.0 kHz	dB	- 65	- 60
± 22.5 kHz	dB	- 65	- 60

Receiver	Unit	Nomial	Limit
Maximum sensitivity	μV	0.3	0.6
Sensitivity for 10 dB S/N	μV	0.5	1.0
Squelch sensitivity at threshold	μV	0.7	1.4
at tight	μV	1000	355 – 2820
AGC figure of merit for – 10 dB audio output (Reference RF input 50 mV)	dB	90	70
Overload AGC characteristics from	dB	3	3 ± 6
50 mV to 1V			
Overall audio fidelity (1 kHz 0 dB Ref.)			
lower frequency 450 Hz	dB	- 6	- 6 + 3
upper frequency 2500 Hz	dB	- 6	- 6 + 3
Adjacent channel selectivity (±10 kHz)	dB	60	55
Maximum audio output power	W	6.0	4.5
Audio output power at 10% THD	W	5.0	3.5
THD at 500 mW AM: 1 mV input			
30% modulation	%	2.5	5
50% modulation	%	3	6
80% modulation	%	4	8
S/N ratio at 1 mV input	dB	40	35
Image rejection ratio (1st IF/2nd IF)	dB	45	35
1/2 IF rejection ratio (2nd IF)	dB	60	50
IF rejection ratio (1st IF/2nd IF)	dB	70	60
Spurious rejection ratio	dB	50	40
Skirt rejection, 20 kHz single signal	dB	60	50
Cross modulation, RS standard	dB	50	40
Desensitivity at 100 μ V desired, 20 kHz away, 3 dB desensitivity	dB	50	40
Oscillator on voltage	V	8.0	10
Current drain at no signal	mA	200	300
Current drain at maximum output	mA	1000	1500
Local emission (Antenna Terminal)	dB m	- 73	- 67


Note: Nominal specs represent the design specs. All units should be able to approximate these – some will exceed and some might drop slightly below these specs. Limit specs represent the absolute worst condition that still might be considered acceptable; in no case should a unit fail to meet limit specs.

BLOCK DIAGRAM


Frequency Synthesizer

Receive

Transmit

CIRCUIT DESCRIPTION

1. General

The TRC-479 is a 40-channel, crystal controlled mobile transceiver which consists of a PLL-synthesizer circuit, a receiver circuit and a transmitter circuit. Diode D12 is a polarity-protector. Power is supplied by a car battery (13.8 V DC). Refer to the Block Diagram and the Schematic Diagram as you read the following descriptions.

2. PLL Synthesizer Section

The TRC-479 uses a Phase-Locked-Loop (PLL) circuit to synthesize the local-oscillator frequencies for receiving and transmitting.

It employs one IC and only one crystal. IC1 is a CMOS large scale integrated circuit containing a reference oscillator, phase detector, active low pass filter, reference divider (1/4096 for transmit, 1/2048 for receive) and a programmable divider.

The programmable divider directly divides the output of the VCO (voltage controlled oscillator) down to a 2.5 kHz (5 kHz for the receiver) signal. Crystal X1 provides a reliable frequency standard which controls the local-oscillator frequencies. The reference-frequency divider inside IC1 counts down the oscillator signal to 1/4096, and passes it on to the phase detector, where it is compared with the 2.5 kHz (5 kHz for receiver) signal from the programmable divider. An error voltage is generated by the phase detector, which is proportional to the phase difference between the two 2.5 kHz (5 kHz for receiver) signals.

This error voltage appears at pin 14 of IC1 and passes through the active LPF (low pass filter), where the error voltage is integrated and harmonics and noise are filtered out. The resulting DC voltage is applied to the varicap diode (D8). Its capacity varies with the applied DC voltage. Because of this capacity change, the output frequency of the VCO is corrected. With proper circuit design and precise adjustments, the VCO frequency is accurate and precise when the system is "locked".

This means that the phase detector senses no phase differences between the two 2.5 kHz (5 kHz for receiver) signals, and the VCO generates a frequency that is as accurate and stable as the reference crystal oscillator. The VCO circuit consists of D8, Q13 and T6.

The circuit is connected in the form of a Hartley oscillator with varicap diode D8 as part of the tank circuit. The VCO circuit generates a signal ranging from 13.4825 to 16.710 MHz. The IC1 also includes an unlock-signal-detector circuit. Should the condition occur, the output at pin 14 of IC1, which is normally open, will be shorted to ground. This means that VCO frequency (1st local oscillator for receiving, 1/2 carrier for transmitting) is "sunk" to pin 14 of IC1 and the transmitter circuit are inhibited.

3. Transmitter Circuit

RF Amplication

The output of doubler amp Q16 is fed through doubler tuning (27 MHz) T7 and T8 to the base of RF amp Q17. The output is then supplied through tuning circuit T9 to RF driver amp Q18. The Q18 output capacitance is devided by tuning circuit L7, C94 and C95 and passed through tuning circuit L8 to the base of final RF stage Q19.

Suppression of Spurious Radiation

The tuning circuit between frequency synthesizer and final amp Q19, and 3 - stage "PI" network C98, L11, C99, L12, C2, L1 and C1 in the Q19 output circuit serve to suppress spurious radiation. This network serves to match Q19 impedance to the antenna and to reduce spurious content to acceptable levels. In-band spurious is reduced to acceptable levels by filtering.

Limiting Power

During factory alignment, the series base resistor of final Q19 (R114) is selected to limit the available power to slightly more than 4 watts. The tuning is adjusted so the actual power is from 3.6 to 3.9 watts, and there are no other controls for adjusting power.

Modulation

The mic input is fed to mic amp Q10 and then to audio power IC3, which feeds the signal to the modulator transformer T5. The audio output at the step up of T5 is fed in series with the B+ voltage through diode D11 to the collectors of Q18 and final Q19 to collector modulate both these stages.

Limiting Modulation

A portion of the modulating voltage is rectified by Q8 to turn on Q9, which attenuates the mic input to mic amp Q10. The resulting feedback loop keeps the modulation from exceeding 100 percent for inputs approximately 40dB greater than required to produce 50 percent modulation. The attack time is about 18 msec. and the release time is about 300 msec.

4. Receiver Circuit

Receiver

The receiver is a double conversion superheterodyne with the first IF at 10.695MHz and the second IF at 455kHz. The synthesizer supplies the first local oscillator 10.695MHz below the received frequency and the second local oscillator at 10.240MHz. The detector output provides reverse AGC to all previous stages except Q6. The AGC voltage is also amplified by Q7 and used to drive RF attenuator Q1, squelch amp and audio amp are IC2.

Indicators

Two additional wafers on the selector switch provide appropriate voltage to a two-digit / seven segment LED display which indicates the selected channel.

When receiving :	Q12 base will be high. Q12 will be turn on. RX LED indicator (LD202) will light.
	D6 asthada will be abarted to groups

When transmitting : D6 cathode will be shorted to ground. D6 will be turn on. TX LED indicator (LD203) will light.

FREQUENCIES GENERATED AND MIXED TO OBTAIN EACH CHANNEL

RECEIVE

* VCO FREQUENCY = (N/2048) x REFERENCE FREQUENCY (10.240MHz)

TRANSMIT

* VCO FREQUENCY = (N/4096) x REFERENCE FREQUENCY (10.240MHz)

* TRANSMIT FREQUENCY = VCO FREQUENCY x 2

	BCD INPUT TO IC1	RECEIVE		TRANSMIT		
CHANNEL NUMBER	IC1 PIN NUMBER 8 7 6 5 4 3 2 1	N	VCO FREQUENCY (MHz)	N	VCO FREQUENCY (MHz)	TRANSMIT FREQUENCY (MHz)
NUMBER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3254 3256 3258 3262 3264 3266 3268 3272 3274 3276 3278 3282 3284 3286 3288 3292 3294 3296 3298 3302 3304 3306 3312	(MHz) 16.270 16.280 16.290 16.310 16.320 16.330 16.340 16.340 16.360 16.370 16.380 16.410 16.420 16.420 16.430 16.440 16.440 16.440 16.440 16.440 16.510 16.520 16.530 16.560	5393 5395 5397 5401 5403 5405 5407 5411 5413 5415 5417 5421 5423 5425 5427 5421 5423 5425 5427 5431 5433 5435 5437 5441 5443 5445 5451	(MHz) 13.4825 13.4875 13.4925 13.5025 13.5075 13.5125 13.5175 13.5275 13.5275 13.5325 13.5525 13.5525 13.5625 13.5625 13.5675 13.5875 13.5875 13.5875 13.5925 13.6025 13.6025 13.6125 13.6275	(MHz) 26.965 26.975 26.985 27.005 27.015 27.025 27.035 27.055 27.055 27.065 27.075 27.105 27.105 27.115 27.125 27.125 27.135 27.155 27.165 27.175 27.185 27.185 27.205 27.215 27.225 27.255
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3308 3310 3314 3316 3318 3320 3322 3324 3326 3328 3330 3332 3334 3336 3338 3340 3342	16.540 16.550 16.570 16.580 16.690 16.610 16.620 16.630 16.640 16.650 16.660 16.670 16.680 16.690 16.710	5447 5449 5453 5455 5457 5459 5461 5463 5465 5467 5469 5471 5473 5475 5477 5479 5481	13.6175 13.6225 13.6325 13.6425 13.6475 13.6525 13.6575 13.6625 13.6675 13.6725 13.6775 13.6825 13.6875 13.6825 13.6925 13.6975 13.7025	27.235 27.245 27.265 27.275 27.285 27.295 27.305 27.315 27.325 27.335 27.345 27.345 27.355 27.365 27.365 27.375 27.385 27.395 27.405

ALIGNMENT PROCEDURES

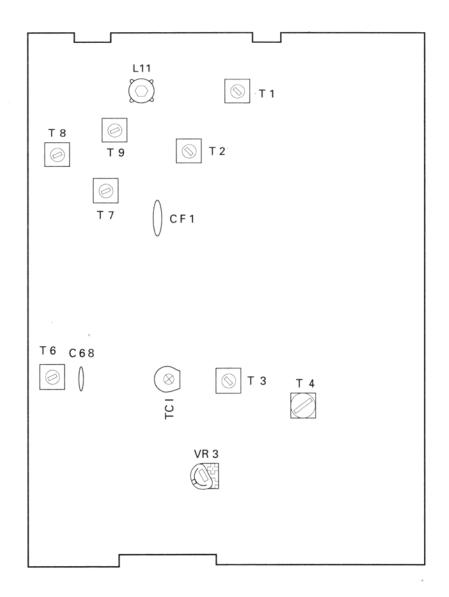
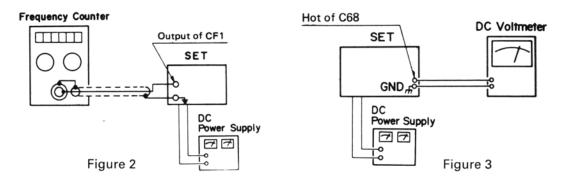


Figure 1


A. PLL SECTION

1. Test Equipment Required

- Frequency counter
- DC voltmeter (above 100 k ohm/V)
- DC power supply (13.8V, 2.5 Amp)

Note: Figure 1 provides test point and all alignment location information.

2. Test Set-up

3. Alignment Procedure

STEP	CONTROL SETTING	OUTPUT INDICATOR CONNECTION	ADJUST	ADJUST FOR		
1	Alignment of Ref. Osc.					
	MIC: Receive POWER: On VOLUME: Optional SQUELCH: Optional Channel Selector: Channel 19	Connect frequency coun- ter to output of CF1. (Figure 2)	TC1	Adjust for 10.240MHz ±100Hz indication on frequency counter.		
2	Alignment of VCO					
	MIC: Transmit POWER: On VOLUME: Optional SQUELCH: Optional Channel Selector: Channel 40	Connect DC voltmeter to hot of C68. (Figure 3)	Т6	Adjust for 5.0V indica- tion on DC voltmeter.		
3	MIC: Receive POWER: On VOLUME: Optional SQUELCH: Optional Channel Selector: Channel 1	Same as Step 2.	meter (m voltmeter	e indication on DC volt- ust be 2.5–3.5V). If DC does not indicate 2.5– just T6 and reutrn to step		

B. TRANSMITTER SECTION

1. Test Equipment Required

- RF power meter •
- 50 ohm load (non-inductive) •
- DC power supply • (13.8V, 2.5 Amp)

- Field strength meter • (or spectrum analyzer with RF attenttator)
- Frequency counter
- Coupler

Note: Figure 1 provides test point and all alignment location information.

2. Test Set-up

SET

Jack

-0 -0

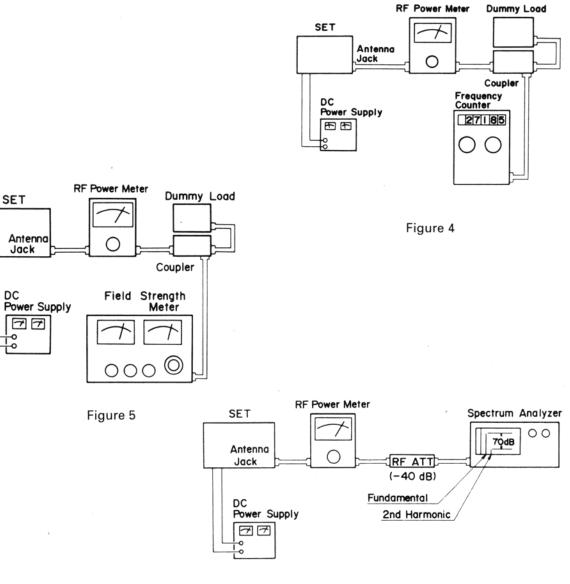


Figure 6

3. Alignment Procedure

STEP	CONTROL SETTING	OUTPUT INDICATOR CONNECTION	ADJUST	ADJUST FOR		
1	Alignment of Overall					
	Set channel selector to CH19.	Connect dummy load and frequency counter through coupler to RF power meter. Connect RF power meter to ANT jack on set. (Figure 4)	T7, T8 T9, L11	Adjust for maximum indication on RF power meter.		
2	Repeat Step 1 twice or 3	times.				
3		Realignment of T9				
	Set channel selector to CH1.	Same as Step 1.	Т9	Adjust for maximum indication on RF power meter.		
4	Set channel selector from CH1 to CH19, then from CH19 to CH40.	Same as Step 1.	Check that difference in RF output power between channels is less than 0.2W.			
5	Same as Step 4.	Same as Step 1.	Check that RF output power is 3.8 to 4.2W on all channels with no modulation. If it is not within the above range, go back to steps 1 through 4 and readjust. If still im- proper, change R114 value.			
6	-	Alignment of Transmitter Fr	requency			
	Return to CH19.	Same as Step 1.	TC1	Make sure that the transmitter frequency is $27.185MHz \pm 300Hz$ on frequency counter. If not, readjust TC1.		
7	Set channel selector to CH1, CH19, and CH40.	Connect dummy load and field strength meter through coupler to RF power meter. Connect RF power meter to ANT jack on set. (Figure 5) Tune to 2nd harmonic fre- quency (54.37MHz) on field strength meter. Or connect spectrum analyzer, RF attenuator and RF power meter to ANT jack on set. (Figure 6)	Check level of fundamental and 2nd harmonic frequency (54.37MHz). Check suppression of 2nd har- monic frequency (54.37MHz) compared to fundamental (must be better than 60dB). Check all channels and if neces- sary, make sure that the 2nd har- monic frequency suppression is more than –60dB on all channels with no modulation. (Reference : –70dB)			

C. RECEIVER SECTION

1. Test Equipment Required

- RF signal generator
- Distortion meter
- SSVM

2. General Alignment Conditions

- a. Signal input must be kept as low as possible, to avoid overload and clipping. (Use highest possible sensitivity of output indicator.)
- b. Standard modulation is 1000Hz at 30% amplitude.
- c. A non-metalic alignment tool must be used for all adjustments.
- d. Power supply is adjusted for 13.8V DC, 2A.

Note: Figure 1 shows test point and all alignment location information.

3. Test Set-up

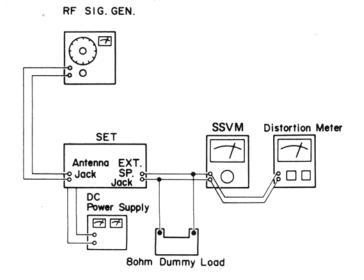
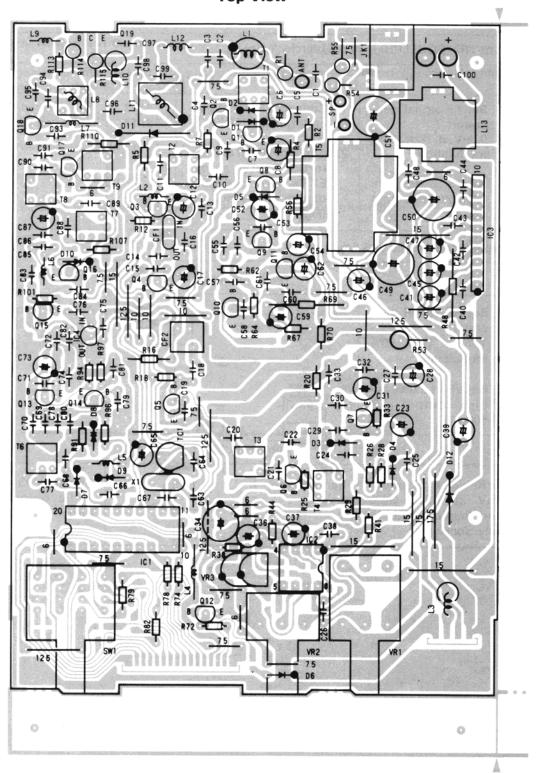
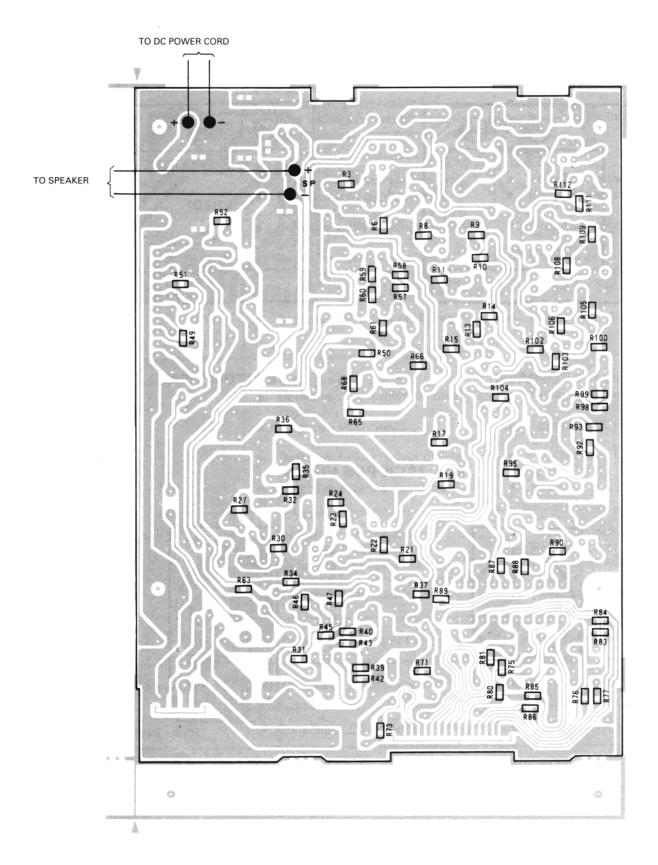


Figure 7

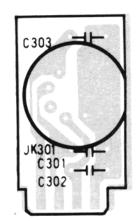
- Dummy load (8 ohm)
- DC power supply (13.8V, 2.5 Amp)


4. Alignment Procedure

STEP	SIGNAL SOURCE CONNECTION	OUTPUT INDICATOR CONNECTION	ADJUST	ADJUST FOR				
1	Set channel selector to CH19.							
2	Turn VR1 (VOLUME) fully	/ clockwise.						
3	Turn VR2 (SQUELCH) ful	ly counterclockwise.						
4	Alignment of Overall							
	 Set RF signal generator: 0.3μV at 1kHz, 30% modulation. Audio output is 500mW (Ref. output power). 	 Connect RF signal generator to ANT jack. Connect SSVM and distortion meter across EXT speaker jack with 8 ohm dummy load. (Figure 7) 	T1, T2 T3, T4	Adjust for maximum indication on SSVM.				
5	Repeat step 4 twice or 3 times.							
6	Realignment of T4							
	 Set RF signal generator: 1mV at 1kHz, 80% modulation. Set VR1 so that audio output is 500mW. 	Same as Step 4.	T4	Adjust for minimum in- dication on distortion meter.				
7	Alignment of Squelch							
	Set RF signal generator: 1mV at 1kHz, 30% modulation. SQUELCH: Fully clockwise.	Same as Step 4.	VR3	Adjust VR3 so that audio output is just turned on.				

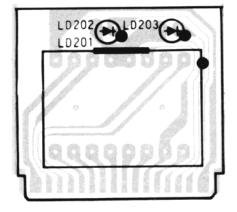

PRINTED CIRCUIT BOARD (TOP AND BOTTOM VIEW / WIRING DIAGRAM)

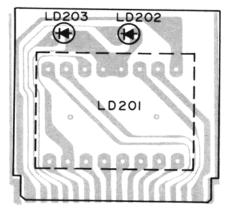
MAIN PCB


Top View

Bottom View

TOP VIEW




BOTTOM VIEW

MIC JACK PCB VIEWS

TOP VIEW

BOTTOM VIEW

