This Information Is Provided By **CBTrickS.COm** Realistic TRC-459 Service Manual

Liability of damages to any equipment is the sole responsibility of the user! Downloading, viewing, or using any information provided on these pages automatically accepts the user to the terms of this agreement!

Modifications are provided for information purposes only!

Supporters of CBTricks.com paid for the hosting so you would have this file.

CBTricks.com is a non-commercial personal website was created to help promote the exchange of service, modification, technically oriented information, and historical information aimed at the Citizens Band, GMRS (CB "A" Band), MURS, Amateur Radios and RF Amps.

CBTricks.com is not sponsored by or connected to any Retailer, Radio, Antenna Manufacturer or Amp Manufacturer, or affiliated with any site links shown in the links database. The use of product or company names on my web site is not endorsement of that product or company.

The site is supported with donations from users, friends and selling of the Site Supporters DVD's to cover some of the costs of having this website on the Internet instead of relying on banner ads, pop-up ads, commercial links, etc. Thus I do not accept advertising banners or pop-up/pop-under advertising or other marketing/sales links or gimmicks on my website.

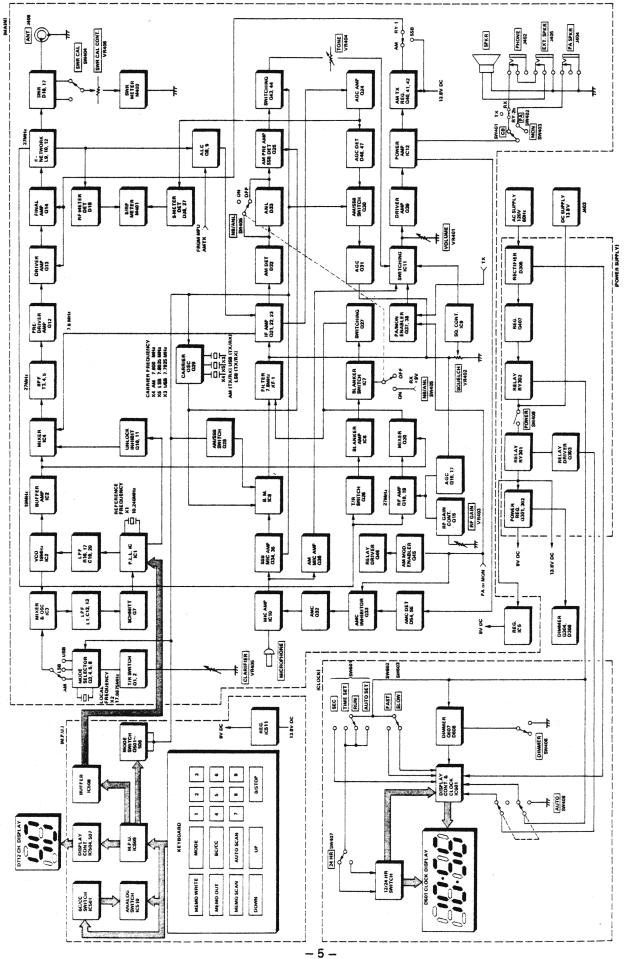
ALL the money from donations is used for CBTricks.com I didn't do all the work to make money (I have a day job). This work was not done for someone else to make money also, for example the ebay CD sellers.

All Trademarks, Logos, and Brand Names are the property of their respective owners. This information is not provided by, or affiliated in any way with any radio or antenna Manufacturers. Thank you for any support you can give.

> For information on how to Support CBTricks.com http://www.cbtricks.com/support/

CONTENTS

SPECIFICATIONS
BLOCK DIAGRAM
PRINCIPLES OF OPERATION
ALIGNMENT/OPERATION CHECK PREPARATION
ALIGNMENT POSITIONS AND POINTS
POWER SUPPLY ADJUSTMENT
PLL SECTION ALIGNMENT
TRANSMITTER SECTION ALIGNMENT
RECEIVER SECTION ALIGNMENT
NOISE BLANKER ALIGNMENT
VCO OUTPUT FREQUENCY, IC-1 INPUT FREQUENCY AND CODE TABLE
PLL OPERATION CHECK (TRANSMIT MODE) 21
PLL OPERATION CHECK (RECEIVE MODE)
AF OPERATION CHECK
TROUBLESHOOTING GUIDE
PARTS LOCATION
WIRING DIAGRAM
ELECTRICAL PARTS LIST
MECHANICAL PARTS LIST
APPENDIX TO PARTS LIST
ACCESSORY LIST
APPENDIX TO ACCESSORY LIST
SEMICONDUCTOR LEAD IDENTIFICATION
IC LEAD IDENTIFICATION AND EQUIVALENT CIRCUIT
SEMICONDUCTOR VOLTAGE READINGS
SCHEMATIC DIAGRAM OF MICROPROCESSOR SECTION
SCHEMATIC DIAGRAM
DISASSEMBLY/EXPLODED VIEW


SPECIFICATIONS

DESCRIPTION	CONDITION		NOMINAL	LIMIT	
	TRANSM	ITTER			
Frequency Tolerance AM	at 25°C		±0.0005%	±0.005%	
SSB	at 25°C		±0.0005%	±0.005%	
RF Output AM	13.8 V DC, No Mod	lulation	4 W max.	$3.6 \sim 4.4 \text{ W}$	
SSB	13.8 V DC		12 W PEP max.	10~13.2 W	
Modulation Distortion	80% MOD at 1 kHz		3%	8%	
Spurious Harmonic Emission AM			-70 dB	-60 dB	
SSB			-70 dB	-60 dB	
Carrier Suppression SSB			-55 dB	-40 dB	
Unwanted Sideband Suppression	2.5 kHz (SSB)		-55 dB	-40 dB	
Current Drain	No Modulation (AN	1)	2100 mA	2500 mA	
	(SS		800 mA	1200 mA	
	80% MOD (AM) at		2500 mA	3000 mA	
	10 W PEP Two-Ton	e (SSB)	2100 mA	3000 mA	
Modulation Frequency Response	1 kHz 0 dB				
,	Lower 450 Hz		AM SSB -6 dB	AM SSB $-6 \pm 3 dB$	
	Upper 2.5 kHz		AM SSB -6 dB	AM SSB $-6 \pm 3 dB$	
Carrier Power Uniformity	Ch-to-Ch with No N		0.3 W	0.5 W	
MIC Input Level Uniformity	Ch-to-Ch for 4 W O		2 dB	3 dB	
and input Level Simolitity	1000 Hz Single-Ton		2 00	300	
Intermodulation Distortion	500 and 2400 Hz Tr		-30 dB	-25 dB	
MIC Input Level Uniformity	LSB to USB for 4W		-30 ab	-25 db	
with input Level Uniformity	1.5 kHz Single Tone		1	2.40	
Minnanhana Camilainian	-		1 dB	3 dB	
Microphone Sensitivity	AM 50% MOD at 1	KHZ	0.5 mV	1.0 mV	
110 0	SSB 4 W PEP		0.5 mV	1.0 mV	
AMC Range	AM 50~100% MOE		60 dB	50 dB	
	SSB 10~ 13.2 W PE	1	60 dB	50 dB	
	RECEIN	/ER		T	
Max. Sensitivity	AM		0.3 μV	1.0 μV	
	SSB		0.2 μV	0.5 μV	
Sensitivity	for 10 dB S/N	AM	0.5 μV	1 µV	
		SSB	0.25 µV	0.5 μV	
AGC Figure of Merit	50 mV, 10 dB	AM	90 dB	80 dB	
		SSB	90 dB	80 dB	
Overload AGC Characteristics	10 mV to 1 V	AM	±2 dB	±5 dB	
		SSB	±2 dB	±5 dB	
Overall Audio Fidelity	at 6 dB Down				
	Upper Frequency	AM	2100 Hz	1750 ~ 2500 Hz	
		SSB	3800 Hz	3000 ~ 4500 Hz	
	Lower Frequency	AM	500 Hz	300~ 650 Hz	
		SSB	500 Hz	300~ 650 Hz	
Cross Modulation, RS Standard	AM		60 dB	50 dB	
Adjacent Channel Selectivity	10 kHz	AM	70 dB	60 dB	
Maximum Audio Output Power	AM		6 W	5 W	
	SSB		6 W	5 W	
Audio Output Power	10% THD	SSB	4.5 W	3.5 W	
		AM	4.5 W	3.5 W	
THD AM	500 mW Output, 1				
	Input 30% (MOD) a		3%	6%	
	80% (MOD) a		5%	10%	
THD SSB	1 mV Input 1 kHz	IC I XI12	370	10/0	
	Single Tone		3%	8%	
	Single I Olle		570	0/0	

DESCRIPTION	CONDITION	NOMINAL	LIMIT
RF Gain Control Range at Max.	AM	40 dB	30 ~ 50 dB
Sensitivity	SSB	40 dB	30 ~ 50 dB
S/N Ratio	AM Input 1 mV	40 dB	35 dB
	SSB	40 dB	35 dB
Squelch Sensitivity at Threshold	AM	0.5 μV	1 μV
•	SSB	0.5 μV	1 μV
Squelch Sensitivity at Tight	AM	1000 µV	350 ~ 2800 μV
	SSB	1000 µV	$350 \sim 2800 \mu V$
Skirt Rejection (±20 kHz)	AM	80 dB	70 dB
S Meter Sensitivity at "S-9"	AM	100 µV	50 ~ 200 μV
(No Modulation AM)	SSB	100 μV	$50 \sim 200 \mu \text{V}$
Image Rejection Ratio	AM	80 dB	60 dB
fo + $(2 \times 7.8 \text{ MHz})$	SSB	80 dB	60 dB
		80 dB	
1/2 IF Rejection Ratio	AM		60 dB
fo + 7.8 MHz/2	SSB	80 dB	60 dB
IF Rejection Ratio 7.8 MHz	AM	80 dB	60 dB
	SSB	80 dB	60 dB
Oscillator Drop-out Voltage	AM	9 V	10 V
	SSB	9 V	10 V
Current Drain at No Signal	AM	450 mA	600 mA
	SSB	450 mA	600 mA
Current Drain at Maximum	AM	1300 mA	1500 mA
	SSB	1300 mA	1500 mA
Clarifier Range	AM	±1.2 kHz	±0.6 ~ ±1.8 kHz
	SSB	±1.2 kHz	±0.6 ~ ±1.8 kHz
Spurious Rejection Ratio			
Within Band	AM	65 dB	60 dB
	SSB	65 dB	60 dB
Outside of Band	AM	60 dB	55 dB
	SSB	60 dB	55 dB
	PUBLIC ADDRESS		1
		0.5	1.5
Microphone Sensitivity	4 W Output 1 kHz	0.5 mV	1.5 mV
Output Power at Maximum	Input 15 mV	6.0 W	5.0 W
Output Power	10% Distortion	4.5 W	4.0 W
Audio Fidelity	at 6 dB Down		
	Lower Frequency (400 Hz)	300 Hz	250 Hz
	Upper Frequency (3000 Hz)	3000 Hz	5000 Hz
Current Drain	No Signal	800 mA	1200 mA
	Max. Output Power	1500 mA	1800 mA
	GENERAL		
Frequency Coverage	29.965 to 27.405 MHz		
Channel	40 Channels		
Frequency Control	Crystal Control (PLL System)		
Frequency Tolerance	Less than ±0.005%		
Operating Temperature	-10° C to $+50^{\circ}$ C		
Humidity	10 to 95%		
		-ch	
Microphone	Dynamic Type with PTT Swit	CU	
Operating Voltage and	120 V AC 60 Hz 115 Watts		
Power Consumption	13.8 V DC (12.0 ~ 15.0 V DC		
Meter (9-Segment LED Display)	TX Power, Signal Strength and		
Size	390 (W) x 100 (H) x 300 (D)	mm (15-6/16" x 3-1	5/16" x 11-13/16")

NOTE: Nominal Specs represent the design specs: all units should be able to approximate these – some will exceed and some may drop slightly below these specs. Limit Specs represent the absolute worst condition which still might be considered acceptable; in no case should a unit perform to less than within any Limit Spec.

BLOCK DIAGRAM

PRINCIPLES OF OPERATION

This section of the Service Manual provides a brief technical description of unique or special circuits which you might otherwise find a little hard to understand, may not notice or be able to troubleshoot.

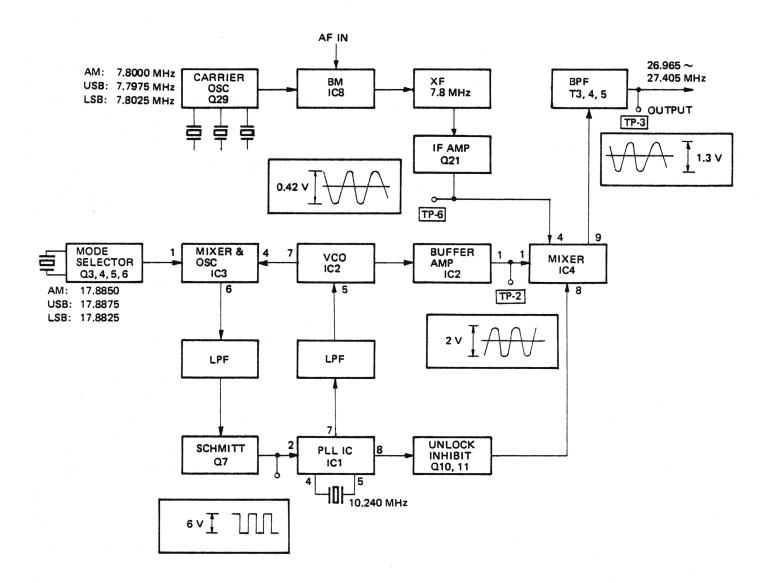
PLL CIRCUITRY

The TRC-459 uses Digital Phase Locked Loop circuitry to synthesize each of the channel frequencies. The PLL circuitry consists of IC-1 (Programmable Counter, Reference Frequency Divider and Phase Detector), IC-2 (Voltage Controlled Osc.), IC-3 (Mixer, Osc.), Reference Frequency Osc. (10.24 MHz), Low Pass Filters and related circuits.

Refer to the Block Diagram as you read the following description. A 10.24 MHz Crystal is used as a reference frequency. The crystal is connected between Pins 4 and 5 of the PLL IC, IC-1.

The M.P.U. provides a Binary Code output, selected by the Channel Keyboard, which is connected to pins 10 through 15 of IC-1. The code determines "N", the divisor which produces the required output frequency for each channel (precisely spaced 10 kHz apart).

Three different frequency signals which correspond with each mode are generated at IC-3. Those are: 17.885 MHz in AM Mode, 17.8875 MHz in USB Mode, and 17.8825 MHz in LSB Mode. The signals are mixed by IC-3 Mixer with the IC-2 VCO frequency (See Table on page 20). The resulting down-mix produces signals of 1.28 through 1.72 MHz, which pass through LPF, and an amplifier, and then are applied to Pin 2 of PLL IC, IC-1. These frequencies are divided by "N" (128 through 172) internally at IC-1; the resulting output will always be 10 kHz.

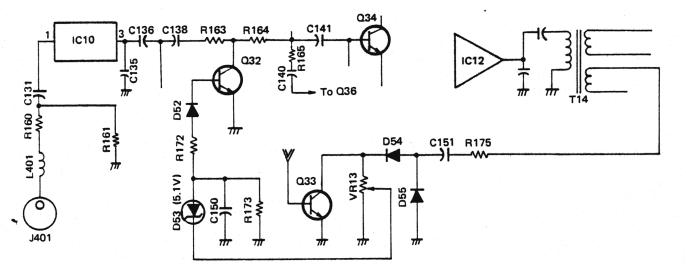

Also, the Reference Oscillator, 10.24 MHz, is divided by 1024 (again, internally by IC-1) resulting in another 10 kHz frequency.

These two 10 kHz signals are fed to the Phase Detector. An error voltage is generated by the Phase Detector, which is in proportion to the phase difference between these two 10 kHz signals. This error voltage appears at Pin 7 of IC-1 and passes through the LPF where the error voltage is integrated, and harmonics and noise are filtered out. The resulting DC voltage is applied to the Varicap Diode (part of VCO) whose capacity varies with applied DC voltage. Thus the output frequency of VCO is corrected. With proper circuit design and precise adjustments, the VCO frequency is accurate and precise. When the system is "locked", the Phase Detector senses no phase differences between the two 10 kHz signals and the VCO generates a frequency which is as accurate and stable as the reference crystal oscillator.

For AM Mode, a 7.8000 MHz signal, produced by Crystal X4 is used for the carrier. This signal is fed to Crystal Filter XF-1 through IC-8, and is mixed with the VCO Signals (19.165 to 19.605 MHz) in IC-4 to produce the desired frequency signal (26.965 to 27.405 MHz).

For USB Mode, a 7.7975 MHz signal, produced by Crystal X3 is used for the carrier. This signal is fed to the Balanced-Modulator IC-8 where it is combined with the audio signal. The resulting signal from the Balanced Modulator contains two signals. Only the upper sideband is needed for USB Mode. Crystal Filter XF-1 eliminates the unnecessary lower sideband, and only the upper sideband (USB) appears at its output. In IC-4, the USB Signal is mixed with the VCO Signals (19.1675 to 19.6075 MHz) to produce the desired frequency signal (26.965 to 27.405 MHz).

For LSB Mode, the circuit function is the same as for USB Mode, except Crystal X5 (7.8025 MHz) provides the carrier frequency and the VCO Signals are 19.1625 to 19.6025 MHz.

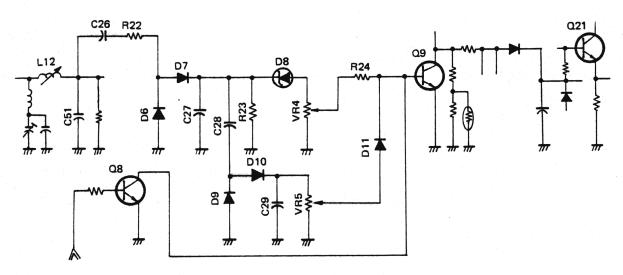


- 7 -

AUTOMATIC MODULATION CONTROL CIRCUIT

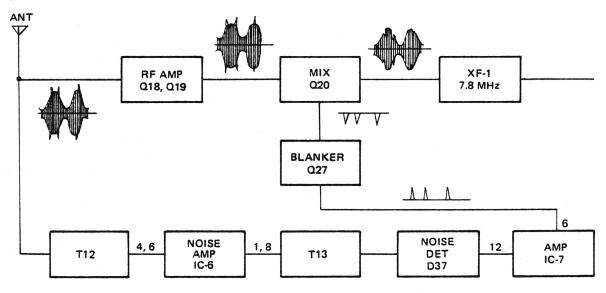
The Automatic Modulation Control (AMC) Circuit consists of Q32 and D52 - 55.

Mic input signal is fed to pin 4 of Microphone Jack J401 and through R160 and C131 to pin 1 of IC-10. The amplified mic signal (from pin 3 of IC-10) is applied to the base of Q36 and is amplified once again. This signal is conveyed to IC-12 the Audio Frequency Power Amplifier through IC-11. IC-12 drives T14, whose secondary couples a portion of the signal through R175 and C151 to AMC detector diodes D54 and D55. D53 (5.1 V Zener) is connected to the output of D54/D55 through VR13 ; when the detected DC voltage from D54/D55 exceeds 5.1 V, D53 conducts and applies DC voltage to the base of Q32 through R172 and D52, decreasing the potential at the collector of Q32. VR13 is adjusted for less than 100% modulation level. Q33 disables the AMC when PA or MON button is pressed in.


AUTOMATIC LIMITER CONTROL

The Automatic Limiter Control (ALC) circuit consists of D6, D7, D8 (5.1 V Zener), D9 - 11, Q9 and Q8. A portion of the transmitter's RF modulated signal is detected by D6 and D7 (for single - tone modulation). If the detected DC voltage exceeds 5.1 V, a positive voltage is applied to the base of Q9. This decreases the potential at the collector of Q9. Thus the base of Q21 is less-biased than before. In this way the desired RF output level is determined.

VR4 is adjusted to set maximum RF power level to less than 12 W PEP. (Single tone)


RF signals modulated by two or more different tones are detected by D6, D7, D9 and D10. The detected DC voltage is applied to the base of Q9 and the potential at the base of Q21 is controlled in the same way. VR5 is adjusted to set maximum RF power level to less than 12 W PEP. (Two tone)

In AM Transmit mode, Q8 turns on and disables ALC.

NOISE BLANKER

Noise pulses are amplified by IC-6 and detected by D37. Detected pulses are then amplified by IC-7. IC-7 applies a positive pulse to the base of Q27, thus decreasing its collector impedance to shunt Q20 gate impedance during the duration of the noise pulses. The most objectional noise pulse frequencies are distributed around 40 MHz, thus T12 and T13 are tuned to this frequency.

MICROPROCESSOR SYSTEM CONCEPT

Refer to MICROPROCESSOR SCHEMATIC DIAGRAM.

Instruction

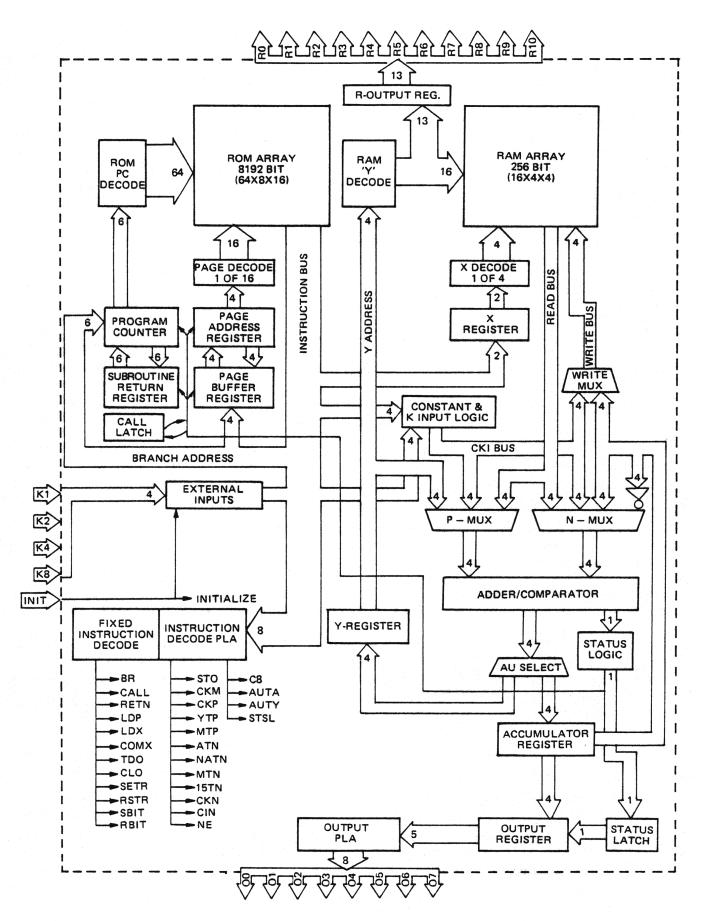
The instruction timing is fixed and each requires six oscillator cycles to excute. Each of the 43 basic instructions is defined to enable one or more microinstructions that activate control lines during one instruction cycle. These microinstructions explain the firmware bridge between software instructions and the individual logic block capabilities. A hardwired logic decoder that cannot be modified decodes 12 "fixed" basic instruction codes into 12 fixed microinstructions for output instructions, branching, subroutines, RAM X addressing, reset and set bit instructions. The remaining 31 basic instructions activate a combination of 16 programmable microinstructions that are encoded by the instruction PLA (programmable logic array).

Output

The MPU has two kinds of outputs, labeled "R" and "O".

R outputs are used to control external devices such as PLL system and channel display. Also input encoding and dedicated status logic outputs are controlled by the R outputs. The R outputs can be strobed by the ROM program to scan a keyboard matrix which makes a simple short from R line to a K input. The ROM program detects this short and interprets which key is pressed.

O outputs are used to transfer information for channel numbers to the display.


Input

Peripheral logics and Keyboard signal to the K-input pins (K1, K2, K4 and K8).

K1 (pin 5):

- 1. TX level transfered with R0 timing through pin 2 of IC510 and D528 disables any key entry.
- 2. BC/CC detector sends high level with R1 timing through pin 3 of IC510 and D527 to stop scanning when BC*SQL or CC*SQL is met.
- 3. When the system is powered up, high level with R3 timing is applied through pin 10 of IC510 to initialize to US1 code.

K2 (pin 6), K4 (pin 7), and K8 (pin 8) receive information encoded by the keyboard matrix.

INITIAL SETTING

When the TRC-459 is connected to a power source, MPU is initialized to AM mode and CH-1, receiving a positive voltage (9 V) at pin-9.

Also, all memories are "AM mode" and "CH-1".

KEYBOARD ENTRY

The MPU generates 3 kinds of timing pulses, labeled R0, R1 and R2 timing to search the KEYBOARD. These outputs appear at pin-21, 22, 23 respectively and are transferred to input pins pin-6, 7, 8 by the KEYBOARD MATRIX. MPU determines which key is pressed by input timing and 3 input combinations as illustrated below.

KEYBOARD MATRIX OUTPUT CODE TABL

0 = GND LEVEL

1 = 9 V

KEY MPU INPUT PIN	UP	DOWN	MODE	AUTO SCAN	MEMO SCAN	O/STOP	MEMO WRITE	MEMO OUT	1	2	3	4	5	6	7	8	9
(K2) 6	1	0	0	1	0	0	1	0	1	1	1	1	1	1	0	0	0
(K4) 7	0	1	0	0	1	0	0	1	1	1	1	0	0	0	1	- 1	1
(K8) 8	0	0	1	0	0	1	0	0	0	0	0	1	1	1	1	1	1
TIMING	R0	R0	R0	R1	R1	R1	R2	R2	R0	R1	R2	R0	R1	R2	R0	R1	R2

MODE SWITCH

MODE SWITCH consists of Q501 - 506, D501 and D502. The MPU controls this switch by outputs of pins 2 and 3.

USB	Ā*B	Only Q503 is conducting and 9 V appears on J102 $-$ 4.
LSB	A*B	Q505 will conduct, disabling USB. D501 conveys 9 V voltage to the base of Q504. Q504 conducts, cutting off Q503. 9 V appears on $J102 - 5$.
AM(RX)	А *в	Q506 will conduct, supplying 9 V voltage on J102 $-$ 6. Because D502 conveys 9 V voltage to the base of Q504, USB is also inhibited.
AM (TX)	Ā*B*TX	Q501 and Q502 will conduct and 9 V voltage appears on J102 $-$ 3.

Notes: pin 2 output = A pin 3 output = B TX = Transmit

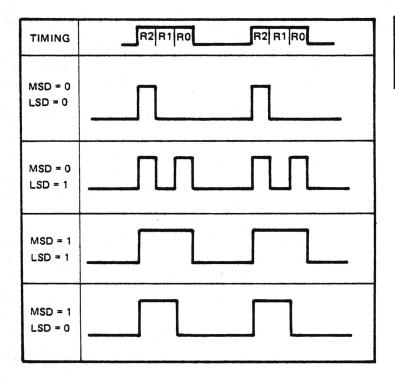
BC/CC DETECTOR

The MPU will determine that BC or CC is active when input voltage at pin-5 (K1) is a positive voltage (9 V) with R1 timing. BC/CC Detector circuitry consists of D503, D504, IC-501, D505, D506, D507, D523, D524, Q507, IC-510 and D527. IC-501 contains BC/CC Flip-Flop and two drivers for BC and CC LED indicator. BC/CC button sends a positive voltage (9 V) to pin-12 of IC-501 through R511. This voltage reverses BC/CC Flip-Flop. If this Flip-Flop is set to BC, the output of pin-3 is high (9 V) and pin-4 is LOW (GND); and vice versa.

CHANNEL DISPLAY CONTROL

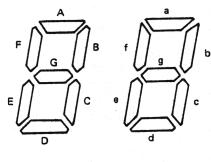
Channel Display Control circuitry consists of IC-502, IC-503 (Inverter Driver), RA-701, 702, D509 – D522 and IC-504 – IC-507 (AND Gate).

MPU sends channel display information from pin-21, pin-22 and pins 11 - 17 to the AND Gate chips.


DIGIT SELECTION

Output of pin-21 selects the Least Significant Digit (LSD) and pin-22, the Most Significant Digit (MSD) respectively at RO or R1 timing.

SEGMENT SELECTION


Segment information from pins 11 - 17 of IC-509 is gated in IC-504 - IC-507 and sent to LSD at R0 and to MSD at R1 timing. At R2 timing every output is high (9 V).

IC504 ~ 507 OUTPUT TIMING CHART

CHANNEL DISPLAY DIGIT AND SEGMENT SELECTION CHART

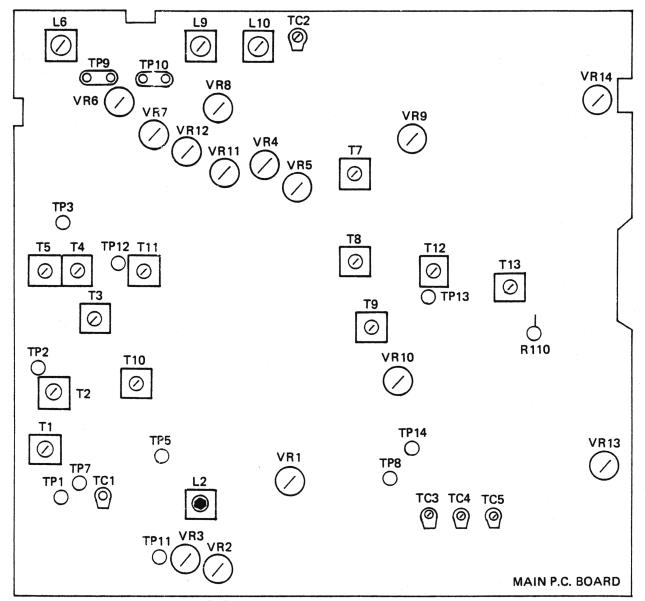
SEGMENT	A	в	С	D	Ε	F	G	а	b	c	d	e	f	g
TIMING				R1							R0			
IC 509 Pin No.	17	16	15	14	13	12	11	17	16	15	14	13	12	11

P.L.L. CONTROL

The MPU controls the P.L.L. circuit by outputs from pin-1 and pins 24 – 28. The P.L.L. data is buffered in IC-508 and sent to P.L.L. circuit IC-1. Refer to Table on page 20 for P.L.L. data combinations (VCO OUTPUT FREQUENCY, IC-1 INPUT FREQUENCY AND CODE TABLE).

ALIGNMENT/OPERATION CHECK PREPARATION

Test instruments required

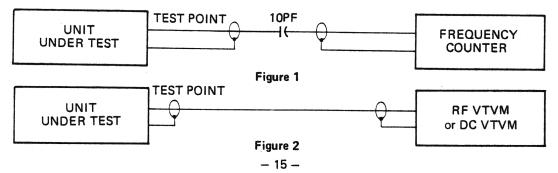

- 1. Oscilloscope
- 2. AC VTVM
- 3. DC VTVM
- 4. Frequency Counter
- 5. 8Ω Dummy Load
- 6. RF Signal Generator
- 7. Power Meter (50 Ω)
- 8. 50Ω , 10 W Dummy Load
- 9. AF Signal Generator (2)
- 10. 54 MHz Monitor Receiver (or Spectrum Analyzer)
- 11. DC Current Meter
- 12. Pulse Generator

8


- 13. Distortion Meter
- NOTE: Use non-metallic tuning tools. Prior to alignment allow instruments and unit 15 minutes to warm-up. Maintain Generator output level at minimum necessary to obtain usable output readings (this will avoid distortion, saturation and clipping).

ALIGNMENT POSITIONS AND POINTS

8


POWER SUPPLY ADJUSTMENT

Step	Control Setting	Test Instrument	Test Instrument Connection	Remarks
1	Supply Voltage : AC 120 V Power Switch : ON	DC VTVM	Connect DC VTVM to Collector of Q301	Adjust VR301 for 13.8 V

PLL SECTION ALIGNMENT

Step	Control Setting	Test Instrument	Test Instrument Connection	Remarks
1	Power Switch : ON	Frequency Counter	Refer to Figure 1 (TP-7)	Adjust TC-1 for 10.240 MHz
2	Power Switch : ON CLARIFIER : Center Mode : USB	Frequency Counter	Refer to Figure 1 (TP-5)	Adjust L2 for 17.8875 MHz
3	Power Switch : ON CLARIFIER : Center Mode : LSB	Frequency Counter	Refer to Figure 1 (TP-5)	Adjust VR3 for 17.8825 MHz
4	Power Switch : ON CLARIFIER : Center Mode : AM	Frequency Counter	Refer to Figure 1 (TP-5)	Adjust VR2 for 17.885 MHz
5	Power Switch : ON CLARIFIER : Center Mode : AM CH : 1 and 40	DC VTVM	Refer to Figure 2 (TP-1)	Adjust T1 for 2 V readings at CH1, 3.5 – 4 V readings at CH40.
6	Power Switch : ON CLARIFIER : Center Mode : USB CH : 18	Frequency Counter	Refer to Figure 1 (TP-2)	Adjust L2 for 19.3775 MHz
7	Power Switch : ON CLARIFIER : Center Mode : LSB CH : 18	Frequency Counter	Refer to Figure 1 (TP-2)	Adjust VR3 for 19.3725 MHz
8	Power Switch : ON CLARIFIER : Center Mode : AM CH : 18	Frequency Counter	Refer to Figure 1 (TP-2)	Adjust VR2 for 19.3750 MHz
9	Same as Step 8	RF VTVM	Refer to Figure 2 (TP-2)	Adjust T2 for max.

NOTE: You can check each channel frequency (CH-1 through CH-40) at TP-1 after Step 8. The frequency should be as shown on Table on page 20.

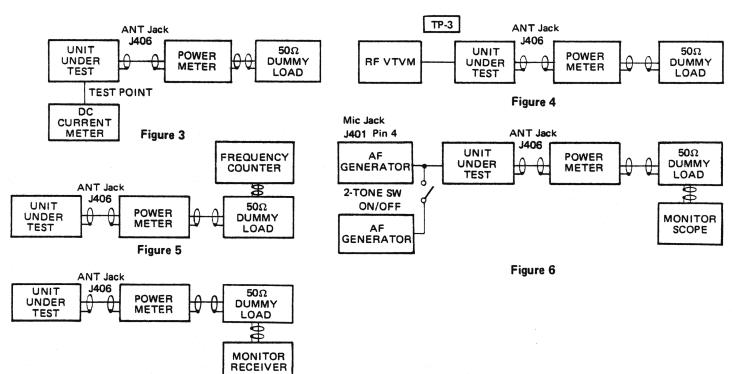
TRANSMITTER SECTION ALIGNMENT

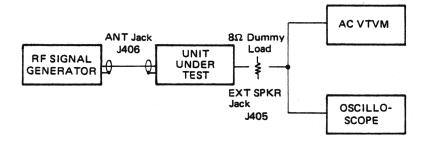
Step	Control Setting	Test Instrument Connection and Setting	Adjust	Remarks
	POWER Switch : ON	Connect Frequency		Frequency Adjustment
1	Mode : AM	Counter to TP-8. (Figure 1)	TC-4	Adjust TC-4 for 7.800 MHz
2	POWER Switch : ON	Same as Step 1	TC-3	Frequency Adjustment
2	Mode : USB			Adjust TC-3 for 7.7975 MHz
83	POWER Switch : ON	Same as Step 1	TC-5	Frequency Adjustment
8	Mode : LSB			Adjust TC-5 for 7.8025 MHz
	POWER Switch : ON	Connect DC Current Meter		Current Adjustment
4	CH : 18 Mode : LSB or USB TX : ON	to TP-9. Connect RF-Power Meter and 50Ω Dummy Load to ANT Jack J406. (Figure 3)	VR-6	Adjust VR-6 for approx. 20 mA
	anna ann an ann an Anna Anna an Anna an Anna an Ann	Connect DC Current Meter		Current Adjustment
5	Same as Step 4	to TP-10. Connect RF-Power Meter and 50Ω Dummy Load to ANT Jack J406 (Figure 3)	VR-7	Adjust VR-7 for approx. 40 mA
	POWER Switch : ON	Connect RF VTVM to TP-3.	ТЗ	Alignment of Power Stage
6	CH : 18 Mode : AM TX : ON	Connect RF-Power Meter and 50Ω Dummy Load to ANT Jack J406 (Figure 4)	T4 T5	Adjust T3, T4 and T5 for max. on RF VTVM.
	POWER Switch : ON	Connect RF-Power Meter	L6	Alignment of Power Stage
7	CH : 18 Mode : AM TX : ON	and 50 Ω Dummy Load to ANT Jack J406 (Figure 5)	L9 L10	Adjust L6, L9 and L10 for max. output
_	0 0 7			Power Output Adjustment
8	Same as Step 7	Same as Step 7	VR-14	Adjust VR-14 for 4 W output
		Connect Frequency Counter		Frequency Adjustment
9	Same as Step 7	and 50Ω Dummy Load to ANT Jack J406 (Figure 5)	VR-1	Adjust VR-1 for 27.175 MHz
	POWER Switch : ON	Connect RF Power Meter,		Adjustment of Balanced
10	CH : 18 Mode : USB or LSB	50 Ω Dummy Load and Monitor Scope to ANT	VR-10	Modulator
	TX : ON	Jack J406. (Figure 6)		Adjust VR-10 for min. output
	POWER Switch : ON CH : 18 Mode : AM TX : ON	J406. Connect AF Generator	(1 kHz) to Pi	and Monitor Scope to ANT Jack in 4 of MIC Jack J401. (Figure 6) rm on Monitor Scope shows 50%
11		Calculation of Modulation Deg	ree.	
		Mod. $\frac{A-B}{A+B} \times 100$	F	в
		Mod. (%) : Modulation Degree		

NOTE: Alignment of Transmitter Section must not be done until PLL section alignment is completed.

12	Same as Step 11	Same instrument connection as Step 11. Increase AF Generator output +30 dB from 50% modulation output level.	VR-13	Adjustment of AMC Adjust VR-13 for 90 – 100% Mod. (but not so that over Mod. occurs).
13	POWER Switch : ON CH : 18 Mode : USB or LSB TX : ON	Same instrument connection as Step 12. Set AF Generator output to 10 mV.	VR-4	Adjustment of ALC (single tone) Adjust VR-4 for 10 – 12 W out- put.
१ 14	Same as Step 13	Connect 50Ω Dummy Load and RF-Power Meter to ANT Jack J406. Connect two AF Generators to Pin 4 of Mic Jack J401. Set one AF Generator to 500 Hz and the other to 2400 Hz, output to 10 mV. (Figure 6)	VR-5	Adjustment of ALC (two tone) Adjust VR5 for 10 – 12 W out- put.
15	Same as Step 7	Same as Step 7	VR-8	Adjustment of Power Indicator Adjust VR-8 so that the Power LEDs light up to 4.
16	POWER Switch : ON CH : 18 Mode : AM TX : ON	Connect 50Ω Dummy Load, RF Power Meter and 54 MHz Monitor Receiver (or Spec- trum Analyzer, if available) to ANT Jack J406. (Figure 7)	TC-2	Alignment of 2nd harmonic spurious radiation. Adjust TC-2 for minimum reading on the scope.

NOTE: You can check each channel frequency (CH-1 through CH-40) at J406 after Step 9. The frequency should be as shown on Table on page 20.



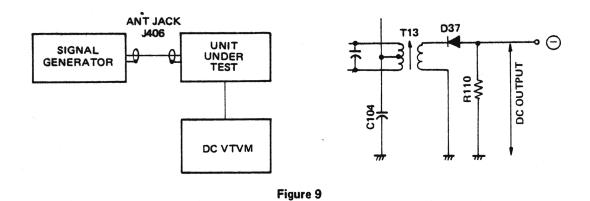

Figure 7

- 17 -

RECEIVER SECTION ALIGNMENT

NOTE: Alignment of Receiver Section must not be done until PLL Section and Transmitter Section ali	ignment is completed.
--	-----------------------

Step	Control Setting	Test Instrument	Signal Generator Setting	Adjust	Remarks
	POWER Switch : ON	Connect Oscilloscope and	Freq. 27.175 MHz		Alignment of RF
1	RF GAIN : Max. SQUELCH : Min. VOLUME : Max. CH : 18 Mode : AM	AC VTVM to EXT SPKR Jack J405 across 8 ohm Dummy Load. Connect RF Signal Generator to ANT Jack J406. (Figure 8)	(Channel 18) at 1 kHz 30% Modu- lation. Set output level to minimum necessary	T7 T8 T9 T10 T11	Adjust T7, T8, T9, T10 and T11 for Max. S/N on Oscilloscope and AC VTVM.
8			Set output level		Adjustment of S-Indicator
2	Same as Step 1	Same as Step 1	to 100μV	VR-12	Adjust VR-12 so that the S-Indicator lights up to 9.
	POWER Switch : ON		Set output Level		Adjustment of SQUELCH
3	RF GAIN : Max. SQUELCH : Max. VOLUME : Max. CH : 18 Mode : AM	Same as Step 1	to 1 mV	VR-11	Adjust VR-11 to the point where waveform just appears.
	POWER Switch : ON		Set SG output		Adjustment of AGC
4	RF GAIN : Max. SQUELCH : Min. VOLUME : Set AF output level for approx. 0.775 V (0 dB) with 100 μ V RF input, with VR-9 set to full counter clockwise position CH : 18 Mode : AM	Same as Step 1	to 100µV before adjustment	VR-9	Increase RF input level to 100 mV, adjust VR-9 for AF output of 0.775 V (0 dB).



NOISE BLANKER ALIGNMENT

Without Pulse Generator

Control Setting	Test Instrument Connection and Setting	Adjust	Remarks
POWER Switch : ON	Connect RF Signal Generator to ANT Jack J406. Set Freq. to 40 MHz, and output to 10 μ V. Connect DC VTVM to the both ends of R110 (Figure 9).	T12 T13	Adjust T12 and T13 for max. reading on DC VTVM.

Using Pulse Generator

Control Setting	Test Instrument Connection and Setting	Adjust	Remarks
POWER Switch : ON SQUELCH: Min. VOLUME : Max. CH : 18 (27.175 MHz)	Connect Signal Generator and Pulse Generator to ANT Jack J406. Set SG Freq. to 27.175 MHz, and output to 1 μ V. Set PG pulse width to 1 μ Sec, cycle to 10 m Sec, and output to 1 V P-P. Connect Oscilloscope to EXT SPKR Jack J405, across 8 ohm Dummy Load. (Figure 10)	T12 only (or T13 only)	Adjust T12 (or T13) for max. S/N ratio on oscilloscope.

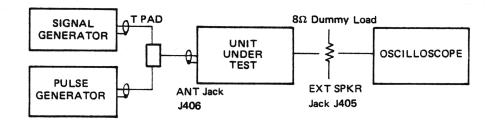
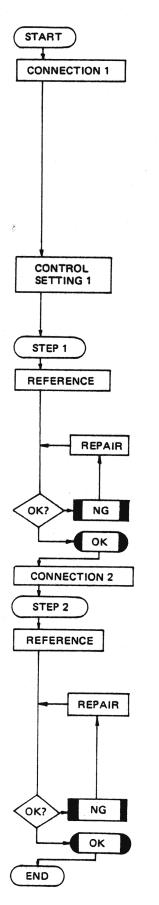



Figure 10

				VCO Frequency (MHz)					INPU	INPUT CODE	ų Ŧ	
RX (MM) #12,1ktk RX (LSB) H1,2ktk RX (LSB) H1,2ktk RX (LSB) H2,4ktk RX (LSB) H2,4ktk RX (LSB) H2,4ktk RX (LSB) H2,4ktk RX (LSB) H2,4kt H2	CH	Frequency (MHz)	TX (AM)			fin (MHz)	z			20. 110		!
26066 $19,165$ $19,175$ $11,26$ $19,175$ $11,26$ $10,10$ $10,175$ $10,175$ $10,175$ $10,175$ $10,0$			RX (AM) ±1.2 kHz		- 1			2	-+		4	15
26976 19175 19175 19175 132 120 0 0 0 0 0 1 1 71006 19.165 19.205 <td>-</td> <td>26.965</td> <td>19.165</td> <td>19.1625</td> <td>19.1675</td> <td>1.28</td> <td>128</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td>0</td>	-	26.965	19.165	19.1625	19.1675	1.28	128	0		0	0	0
26986 91656 91025 91025 91025 91025 91025 91025 91025 91025 91025 91025 91026 9206 9106	2	26.975	19.175	19.1725	19.1775	1.29	129	0		•	0	-
71006 19.206 19.2056	3	26.985	19.185	19.1825	19.1875	1.30	130	0		0	-	•
77016 19.216 19.2126 19.2156 19.2256	4	27.005	19.205	19.2025	19.2075	1.32	132	0		-	0	0
71005 19.235 19.2355 <t< td=""><td>2</td><td>27.015</td><td>19.215</td><td>19.2125</td><td>19.2175</td><td>1.33</td><td>133</td><td>0</td><td></td><td>-</td><td>0</td><td>-</td></t<>	2	27.015	19.215	19.2125	19.2175	1.33	133	0		-	0	-
71035 $19,236$ $19,2365$ $19,3365$ $19,366$ $19,3365$ $19,3365$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $19,366$ $10,66$ $10,66$	9	27.025	19.225	19.2225	19.2275	1.34	134	0	_	-	-	0
72065 $19,266$ $19,265$ $19,265$ $19,265$ $19,265$ $19,275$ 139 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	2	27.035	19.235	19.2325	19.2375	1.35	135	0	-	-	-	-
7.066 19.266 19.265 19.275	8	27.055	19.255	19.2525	19.2575	1.37	137	0	_	0	0	-
27.075 19.275 19.275 19.275 19.275 19.275 1.20 1.40 1.0 1 <th< td=""><td>6</td><td>27.065</td><td>19.265</td><td>19.2625</td><td>19.2675</td><td>1.38</td><td>138</td><td>0</td><td></td><td>0</td><td>-</td><td>•</td></th<>	6	27.065	19.265	19.2625	19.2675	1.38	138	0		0	-	•
27,066 $19,286$ $19,2825$ $19,2875$ $19,2875$ $19,2075$ $14,40$ 140 0 1 1 1 1 $27,1155$ $19,3055$ $19,3075$ $14,43$ 144 0 1 0	10	27.075	19.275	19.2725	19.2775	1.39	139	0		0	-	-
27,106 $19,306$ $19,3056$ $19,3076$ $14,2$ 142 0 0 1 <t< td=""><td>11</td><td>27.085</td><td>19.285</td><td>19.2825</td><td>19.2875</td><td>1.40</td><td>140</td><td>0</td><td></td><td>1</td><td>0</td><td>0</td></t<>	11	27.085	19.285	19.2825	19.2875	1.40	140	0		1	0	0
27,115 19.316 19.3125 19.3175 14.4 0 0 1 1 1 1 $27,135$ 19.3255 19.3255 19.3255 19.3255 19.3255 147 147 0 1 0	12	27.105	19.305	19.3025	19.3075	1.42	142	0		•	-	0
27.125 19.325 19.3225 19.3255 19.3275 19.3755 14.4 14.6 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 <	13	27.115	19.315	19.3125	19.3175	1.43	143	0		1	1	1
27.136 19.336 19.3376 19.3376 1.46 1.46 0 1 0 0 0 0 0 1 27.166 19.365 19.3625 19.3755 1.49 1.49 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14	27.125	19.325	19.3225	19.3275	1.44	144	0		0	0	0
27.166 19.366 19.3576 19.375 1.47 147 147 10 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1	15	27.135	19.335	19.3325	19.3375	1.45	145	0		0	0	1
27.165 19.366 19.3625 19.375 19.375 19.375 19.375 19.375 19.375 19.375 19.375 19.375 19.40 10 1 0 1 0 1 0 1 0 1 1 0 27.705 19.405 19.405 19.4075 1.52 1.52 122 0 1 1 1 0 1 1 1 0 1 1 1 0 1 </td <td>16</td> <td>27.155</td> <td>19.355</td> <td>19.3525</td> <td>19.3575</td> <td>1.47</td> <td>147</td> <td>0</td> <td></td> <td>0</td> <td>1</td> <td>1</td>	16	27.155	19.355	19.3525	19.3575	1.47	147	0		0	1	1
27,176 $19,376$ $19,375$ $19,375$ $19,375$ $19,375$ $19,46$ $19,385$ $19,387$ $19,46$ 10 1 10 1 10 1 10 1 10 1 10 10 11 11 10 <td>17</td> <td>27.165</td> <td>19.365</td> <td>19.3625</td> <td>19.3675</td> <td>1.48</td> <td>148</td> <td>0</td> <td></td> <td>1</td> <td>0</td> <td>0</td>	17	27.165	19.365	19.3625	19.3675	1.48	148	0		1	0	0
27.185 19.386 19.3825 19.3875 1.50 1.50 10 1 1 0 1 1 1 0 1	18	27.175	19.375	19.3725	19.3775	1.49	149	0	-	1	0	-
27,206 $19,406$ $19,4026$ $19,4076$ $16,2$ $16,2$ 10 1 1 0 0 $27,216$ $19,415$ $19,4125$ $19,4126$ $19,4126$ $19,4126$ $19,4126$ $19,4126$ $19,4126$ $19,4126$ $19,4126$ $19,4126$ $19,4126$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $19,4216$ $11,616$ 11	19	27.185	19.385	19.3825	19.3875	1.50	150	0			1	0
27.216 19.416 19.4126 19.4176 1.53 1.53 1.53 1.53 1.5 1.6 1.1 1.0 0 27.226 19.4256 19.4256 19.4576 1.57 1.57 1.57 1.6 0 1 1 0 1 27.236 19.4356 19.4356 19.4376 1.56 1.56 1.66 0 1 1 0 1 27.245 19.446 19.4456 19.4456 19.4476 19.4756 1.56 1.66 0 1 1 0 1 27.266 19.446 19.4456 19.4456 19.4476 1.66 1.66 1 1 1 1 1 27.266 19.4465 19.4456 19.4475 19.4876 1.66 1.66 1 1 1 1 1 1 27.266 19.4656 19.4875 19.4876 1.66 1.66 1 1 1 1 1 27.236 19.4876 19.4876 1.667 1.66 1.66 1 1 1 1 1 27.335 19.5656 19.5675 1.667 1.667 1.667 1.67 1 0 1 1 1 1 27.336 19.5656 19.5676 1.667 1.67 1.67 1 0 1 1 1 1 27.336 19.5666 19.5676 1.67 1.67 1.67 1 0 1 <	20	27.205	19.405	19.4025	19.4075	1.52	152	0	_	0	0	0
27.256 19.426 19.4256 19.4256 19.4256 19.4256 19.4256 19.4575 1.57 1.57 1.64 0 1 1 0 1 27.236 19.4656 19.4626 19.4675 1.56 1.56 1.66 0 1 1 1 0 27.236 19.4656 19.4626 19.4675 1.56 1.56 1.66 0 1 1 1 0 27.236 19.4656 19.4626 19.4675 19.4676 19.4676 1.61 1.61 1 1 1 1 27.236 19.4656 19.4676 19.4675 19.4676 19.4676 1.61 1 1 1 1 1 27.236 19.4656 19.4676 19.4675 1.61 1.61 1 1 1 1 1 1 1 27.236 19.4656 19.4675 19.4675 1.61 1.61 1 1 1 1 1 1 27.236 19.4656 19.4675 19.4675 1.62 1.62 1.62 1.62 1.62 1.62 1	21	27.215	19.415	19.4125	19.4175	1.53	153	0		0	0	-
	22	27.225	19.425	19.4225	19.4275	1.54	154	0			-	•
27,236 $19,436$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,435$ $19,4375$ 156 10 1 1 1 1 $27,236$ $19,4365$ $19,4325$ $19,4375$ $19,4375$ $16,0$ 10 1	23	27.255	19.455	19.4525	19.4575	1.57	157	0	-	_	0	-
27.245 19.445 19.4425 19.4425 19.4425 19.4425 19.4425 19.4425 19.4425 19.4425 19.4675 19.465 19.4625 19.4625 19.4675 1.58 158 0 1 1 1 1 1 27.265 19.465 19.4625 19.4725 19.4755 1.59 159 0 1 <td< td=""><td>24</td><td>27.235</td><td>19.435</td><td>19.4325</td><td>19.4375</td><td>1.55</td><td>155</td><td>0</td><td></td><td>0</td><td>-</td><td>-</td></td<>	24	27.235	19.435	19.4325	19.4375	1.55	155	0		0	-	-
27,266 $19,465$ $19,4626$ $19,4675$ $19,4675$ 1.56 159 0 1 1 1 1 1 $27,276$ $19,475$ $19,475$ $19,475$ $19,475$ 1.50 159 0 1 1 1 1 1 $27,285$ $19,485$ $19,4875$ $19,4875$ 1.60 160 1 0 0 0 0 0 $27,285$ $19,485$ $19,4875$ $19,4875$ 1.61 161 1 0 0 0 0 $27,305$ $19,4956$ $19,4975$ 1.61 161 11 0 0 0 0 0 $27,305$ $19,505$ $19,5025$ $19,5075$ 162 162 1 0 0 1 1 $27,335$ $19,555$ $19,5255$ $19,5775$ 1.66 166 1 0 0 1 1 1 $27,335$ $19,556$ $19,5255$ $19,5475$ 1.66 1.66 166 1 0 0 1 1 1 $27,335$ $19,5656$ $19,5475$ 1.6676 1.66 1.66 1 0 1 1 1 1 $27,335$ $19,5656$ $19,5475$ 1.6676 1.66 1.66 1 0 1 1 1 $27,335$ $19,5656$ $19,5475$ 1.6676 1.66 1.66 1 0 1 1 1 $27,336$ $19,5676$ $19,5775$ 1.67 <td>25</td> <td>27.245</td> <td>19.445</td> <td>19.4425</td> <td>19.4475</td> <td>1.56</td> <td>156</td> <td>0</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td>	25	27.245	19.445	19.4425	19.4475	1.56	156	0	-	-	0	0
27.276 19.476 19.475 19.475 19.475 19.475 1.60 1.60 1.6 </td <td>26</td> <td>27.265</td> <td>19.465</td> <td>19.4625</td> <td>19.4675</td> <td>1.58</td> <td>158</td> <td>0</td> <td>_</td> <td>-</td> <td>-</td> <td>0</td>	26	27.265	19.465	19.4625	19.4675	1.58	158	0	_	-	-	0
27.285 19.485 19.4825 19.4875 19.4875 16.0 16.0 10 0 0 0 0 27.295 19.4955 19.4925 19.4975 16.1 16.1 16.1 11 0 0 0 0 0 27.305 19.505 19.505 19.5075 19.5075 16.2 16.2 16.2 16.2 10 0 0 0 0 0 0 27.305 19.515 19.515 19.5175 16.2 16.2 16.2 10 0 0 0 1 0 27.335 19.525 19.5255 19.5275 19.5375 16.6 16.6 11 0 0 1 0 0 0 0 27.335 19.525 19.5255 19.5275 19.5475 16.6 16.7 16.7 16.7 10 0 0 0 1 1 27.365 19.5655 19.5675 19.5775 16.6 16.7 10 0 1 1 1 27.365 19.5756 19.5675 16.67 16.67 16.7 16.7 10 0 1 1 1 27.365 19.5756 19.5755 19.5775 16.6 16.6 1 0 1 1 1 27.366 19.5756 19.5775 16.6 16.6 16.6 1 0 1 1 1 27.386 19.576 19.5755 19.575	27	27.275	19.475	19.4725	19.4775	1.59	159	0		-	-	-
27.296 19.495 19.4925 19.4975 1.61 1.61 1.61 1.61 1.61 0 0 0 0 27.305 19.505 19.5025 19.5075 19.5075 1.62 1.62 1 0 0 0 1 27.315 19.5156 19.5125 19.5175 1.63 1.63 1 0 0 0 1 27.325 19.5256 19.5275 19.5775 1.66 1.66 1 0 0 1 0 27.335 19.5356 19.5256 19.5375 1.656 1.66 1 0 0 1 0 27.335 19.5456 19.5256 19.5475 1.66 1.66 1 0 0 1 0 27.335 19.5656 19.5625 19.5675 1.667 1.67 1 0 0 1 1 27.335 19.5656 19.5625 19.5675 1.667 1.67 1 0 0 1 1 27.335 19.5656 19.5625 19.5675 1.667 1.67 1 0 1 0 1 1 27.335 19.5656 19.5625 19.5675 1.667 1.67 1 0 1 1 1 27.336 19.5655 19.5675 1.6675 1.69 1.69 1 0 1 0 1 0 1 27.336 19.5655 19.5675 19.5675 <td< td=""><td>28</td><td>27.285</td><td>19.485</td><td>19.4825</td><td>19.4875</td><td>1.60</td><td>160</td><td>-</td><td>-</td><td></td><td>•</td><td>•</td></td<>	28	27.285	19.485	19.4825	19.4875	1.60	160	-	-		•	•
27.305 19.505 19.5025 19.5075 1.62 1.62 16 1 0 0 1 27.315 19.515 19.5125 19.5125 19.5175 1.63 163 1 0 0 1 0 27.325 19.5255 19.5255 19.5275 1.64 1.64 1 0 0 1 0 27.335 19.5355 19.5325 19.5375 1.65 1.66 166 1 0 0 1 0 27.335 19.5355 19.5325 19.5375 1.65 1.66 166 1 0 0 1 1 27.335 19.5555 19.5575 1.66 166 1 0 0 1 1 1 27.355 19.5655 19.5675 1.66 166 1 0 0 1 1 1 27.355 19.5655 19.5675 1.66 1.67 167 1 0 0 1 1 27.355 19.5675 19.6675 1.66 1.66 16 0 1 0 1 1 27.355 19.5675 1.66 1.66 166 1 0 0 1 1 1 27.355 19.5675 1.66 1.66 1.67 1 0 1 0 1 1 10.5255 19.5675 1.69 1.69 1.69 1 0 1 0 1 0 1 <	39	27.295	19.495	19.4925	19.4975	1.61	161	-	-		•	-
27.315 19.515 19.515 19.5126 1.63 163 11 0 0 1 27.325 19.525 19.525 19.5275 1.64 164 1 0 0 1 0 27.335 19.535 19.5255 19.5275 1.65 1.65 165 1 0 0 1 0 27.345 19.5455 19.5375 1.65 1.65 166 1 0 0 1 1 27.345 19.5655 19.5475 1.65 1.65 167 1 0 0 1 1 27.345 19.5655 19.5675 1.66 166 1 0 0 1 1 1 27.345 19.5655 19.5675 1.67 1.67 167 1 0 0 1 1 27.345 19.5655 1.6575 1.66 166 1 0 1 1 1 27.345 19.5675 1.6675 1.69 167 1 0 1 1 1 27.345 19.5675 1.6675 1.69 169 1 0 1 0 1 0 0 1 27.345 19.5675 1.6675 1.69 166 1 0 1 0 1 1 0 1 1 27.345 19.5675 1.69 1.69 1.70 170 170 1 0 1 0 1	30	27.305	19.505	19.5025	19.5075	1.62	162	-	-	-	-	•
27.325 19.525 19.5225 19.5275 1.64 1.64 1 0 0 1 0 27.335 19.535 19.535 19.5375 1.65 1.65 165 1 0 0 1 0 27.345 19.535 19.5475 1.65 1.65 166 1 0 0 1 1 0 27.345 19.5556 19.5475 1.66 1.67 167 1 0 0 1 1 27.355 19.5655 19.5675 1.67 1.67 167 1 0 0 1 1 27.356 19.5625 19.5675 1.68 1.69 1 0 1 1 1 27.355 19.5675 1.68 1.69 169 1 0 1 1 1 27.355 19.5675 1.6875 1.69 169 1 0 1 1 1 27.355 19.5675 1.69 1.69 169 1 0 1 0 1 1 27.395 19.5675 19.5675 1.69 1.70 170 17 0 1 0 1 0 0 27.305 19.5675 19.5675 1.69 1.70 170 1 0 1 0 1 0 1 27.305 19.5675 19.5675 1.70 170 170 0 1 0 1 0 1	31	27.315	19.515	19.5125	19.5175	1.63	163	-	-		-	-
27.335 19.535 19.535 1.65 1.65 165 16 1 0 0 1 0 27.345 19.545 19.5425 19.5475 1.66 166 1 0 0 1 1 1 27.355 19.5556 19.5625 19.5675 1.67 167 1 0 0 1 1 1 27.365 19.5655 19.5675 1.67 1.67 167 1 0 0 1 1 1 27.365 19.5625 19.5675 1.68 168 1 0 1 0 0 0 0 27.365 19.5675 1.68 1.69 169 1 0 1 0 0 0 0 27.395 19.5675 19.5675 1.69 1.69 16 1 0 1 0 0 0 27.395 19.5625 19.5675 1.69 1.70 170 1 0 1 0 1 27.305 19.5925 19.5675 1.71 171 1 0 1 0 1 0 1 0 1 27.305 19.5055 19.5675 1.72 1.71 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 </td <td>32</td> <td>27.325</td> <td>19.525</td> <td>19.5225</td> <td>19.5275</td> <td>1.64</td> <td>164</td> <td>-</td> <td>-</td> <td>-</td> <td>0</td> <td>0</td>	32	27.325	19.525	19.5225	19.5275	1.64	164	-	-	-	0	0
27.345 19.545 19.5425 19.5475 1.66 166 1 0 0 1 1 27.355 19.5656 19.5625 19.5675 1.67 167 1 0 0 1 1 27.365 19.5655 19.5675 1.67 167 1 0 0 1 1 27.365 19.5675 1.676 1.68 168 1 0 1 1 0 0 27.375 19.5675 19.5675 1.69 1.69 169 1 0 1 0 0 27.385 19.5625 19.5675 1.69 1.69 16 1 0 1 0 1 27.395 19.5625 19.5875 1.70 170 170 1 0 1 0 1 27.305 19.5925 19.5975 1.71 171 1 0 1 0 1 0 1 27.405 19.605 19.6075 1.72 1.72 1 0 1 0 1 0 1	33	27.335	19.535	19.5325	19.5375	1.65	165	-		-	0	-
27.355 19.555 19.5525 19.5575 1.67 167 1 0 0 1 1 27.365 19.5655 19.5625 19.5675 1.68 168 1 0 1 0 0 27.375 19.575 19.5775 1.69 169 1 0 1 0 0 0 27.375 19.575 19.5775 1.69 169 1 0 1 0 1 27.385 19.5825 19.5875 1.70 170 1 0 1 0 1 27.395 19.5925 19.5975 1.71 171 1 0 1 0 1 27.405 19.605 19.6025 19.6075 1.72 172 1 0 1 0 1 0	34	27.345	19.545	19.5425	19.5475	1.66	166	1		-	-	0
27.365 19.565 19.5625 19.5675 1.68 168 1 0 1 0 1 0 1 0	35	27.355	19.555	19.5525	19.5575	1.67	167	-		_	-	-
27.375 19.575 19.5725 19.5775 1.69 169 1 0 1 0 1 0 1	36	27.365	19.565	19.5625	19.5675	1.68	168	-		-	0	•
27.385 19.685 19.6825 19.5875 1.70 170 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1	37	27.375	19.575	19.5725	19.5775	1.69	169	-		_	•	-
27.395 19.595 19.5925 19.5975 1.71 171 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	38	27.385	19.585	19.5825	19.5875	1.70	170	-	-	-	-	0
27.405 19.605 19.6025 19.6075 1.72 1 0 1 1 0	39	27.395	19.595	19.5925	19.5975	1.71	171	-		0	-	-
	40	27.405	19.605	19.6025	19.6075	1.72	172	-			•	•

VCO OUTPUT FREQUENCY, IC1 INPUT FREQUENCY AND CODE TABLE

PLL OPERATION CHECK (TRANSMIT MODE)

Connect the Frequency counter to TP-5, and 50 Ω Dummy Load to ANT Jack J406. Refer to Figure 11.

POWER Switch: ON (Press in)CB Switch: ON (Press in)Channel: CH-19Push-to-talk switch : PUSH

Check frequency in each mode : AM, USB, and LSB.

Frequencies are : 17.8850 MHz \pm 100 Hz in AM, 17.8875 MHz \pm 100 Hz in USB, and 17.8825 MHz \pm 100 Hz in LSB.

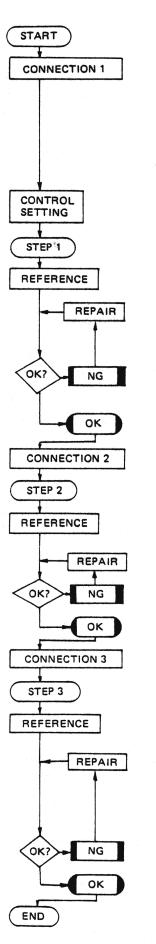
Readjust VR-2 and/or VR-3 and/or L2. Check D1, D2, Q3, Q4 and/or associated circuit components. Check Microprocessor circuit components.

Wrong frequencies appear or no signal appears.

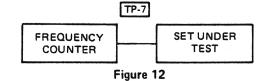
Frequencies are OK.

Connect the Frequency Counter to TP-2.

Check frequency in each mode : AM, USB, and LSB.


Frequencies are : 19.385 MHz \pm 100 Hz in AM, 19.3875 MHz \pm 100 Hz in USB, and 19.3825 MHz \pm 100 Hz in LSB.

Check IC-1, IC-2 and/or associated circuit components. Check Microprocessor circuit components.


Wrong frequencies appear or no signal appears.

Frequencies are OK.

PLL OPERATION CHECK (RECEIVE MODE)

Connect the Frequency counter to TP-7. Refer to Figure 12.

POWER Switch : ON (Press in) Channel : CH-19, CLARIFIER : Center

Check frequency

Frequency is 10.240 MHz ± 100 Hz.

Adjust TC-1 until the frequency is $10.240 \text{ MHz} \pm 100 \text{ Hz}$. Check IC-1 and/or associated circuit components.

Frequency is not 10.240 MHz ± 100 Hz or no signal appears.

Frequency is OK.

Connect the Frequency Counter to TP-5.

Check frequency in each mode : AM, USB and LSB.

Frequencies are : 17.8850 MHz \pm 100 Hz in AM, 17.8875 MHz \pm 100 Hz in USB, and 17.8825 MHz \pm 100 Hz in LSB.

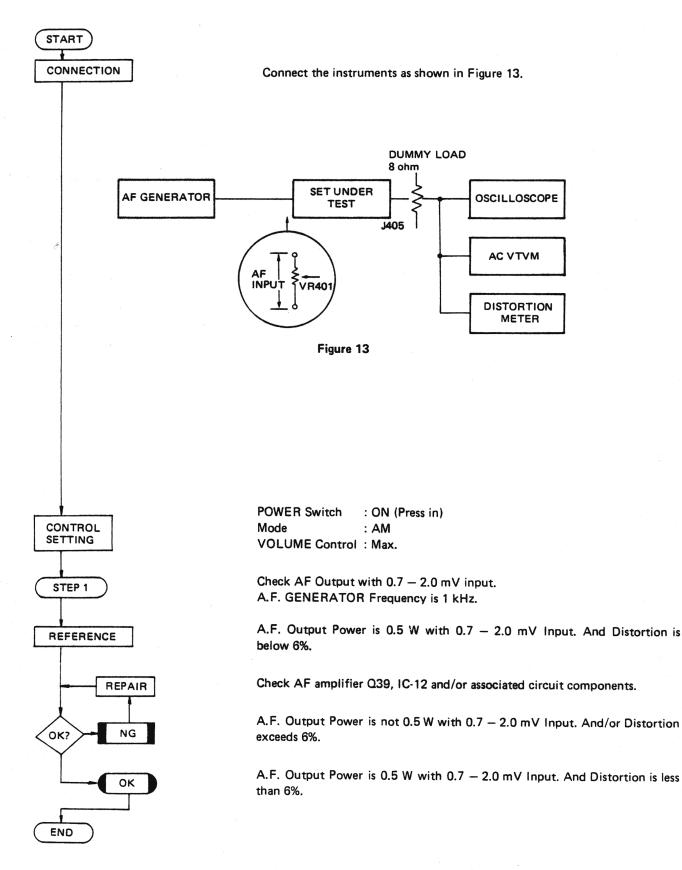
Check IC-3 and/or associated circuit components.

Wrong frequencies appear or no signal appears.

Frequencies are OK.

Connect the Frequency Counter to TP2.

Check frequency in each mode : AM, USB, and LSB.

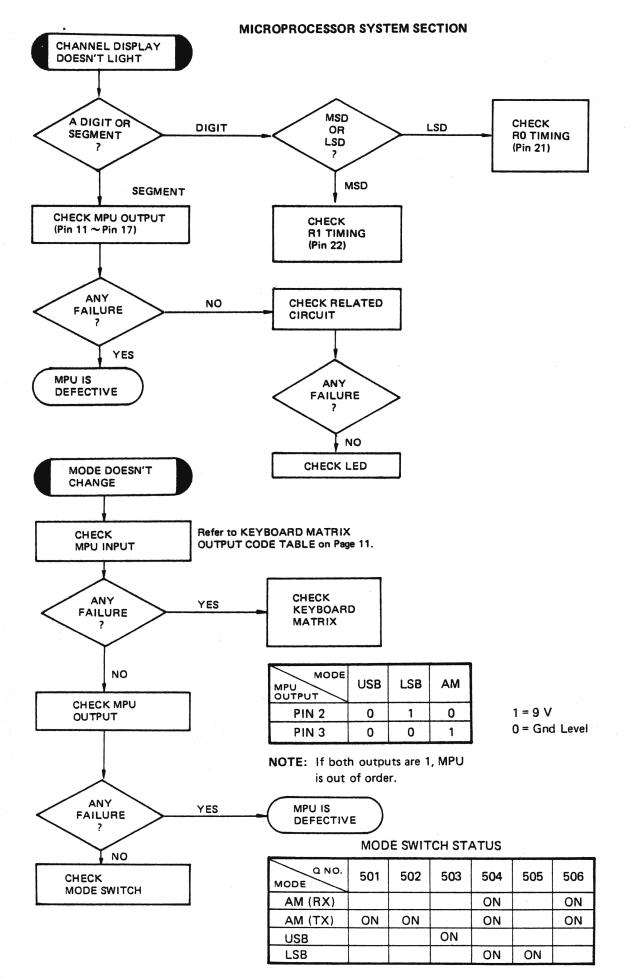

Frequencies are : 19.385 MHz \pm 100 Hz in AM, 19.3875 MHz \pm 100 Hz in USB, and 19.3825 MHz \pm 100 Hz in LSB.

Check IC-1, IC-2 and/or associated circuit components. Check Input code to IC-1 (Pin 10-15). See Table on page 20. Check Microprocessor circuit components.

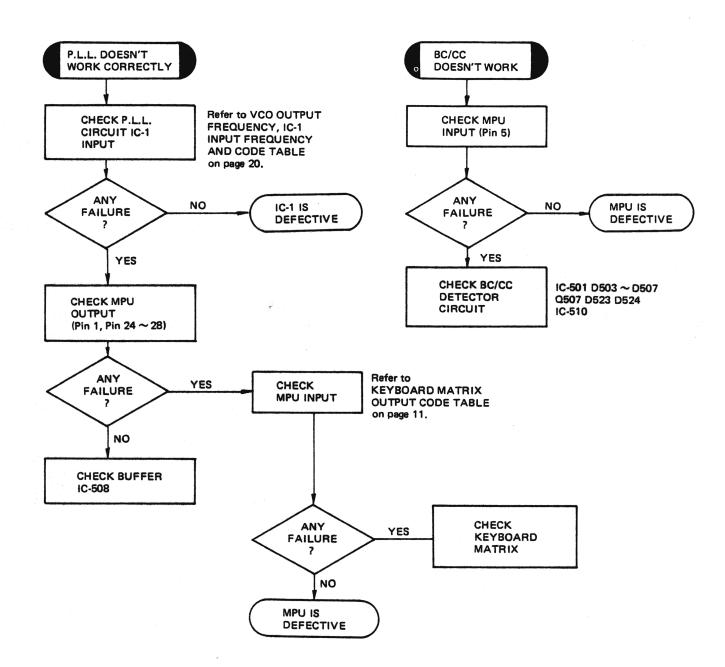
Wrong frequencies appear or no signal appears.

Frequencies are OK.

AF OPERATION CHECK

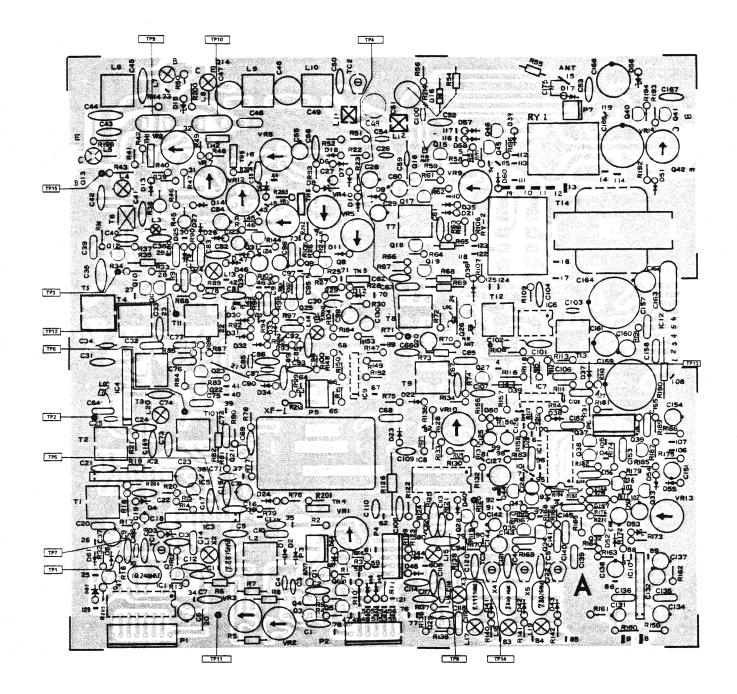


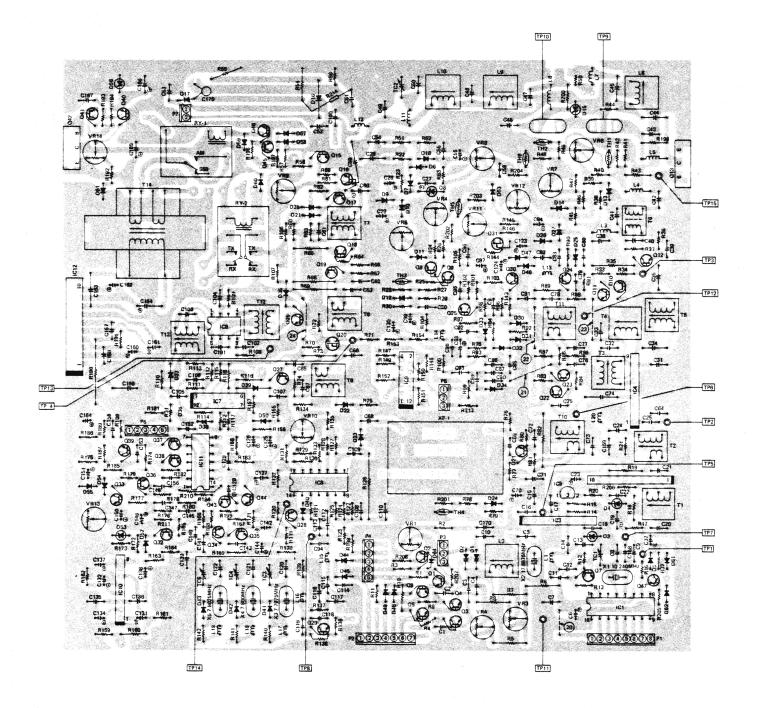
TROUBLESHOOTING GUIDE


GENERAL

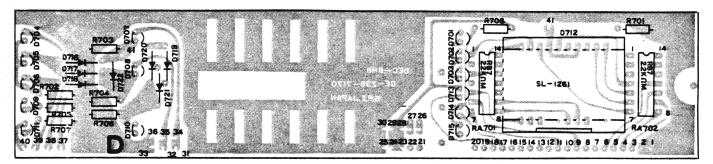
	Symptom	Possible Cause
1)	LEDs do not light and/or set fails to operate when POWER is on	 A) Faulty power cord. B) Defective D305, IC-301, Q401, RY-301, RY-302, Q301, Q302, Q303, Q304, and/or associated circuit components. C) Defective LEDs. D) Fuse blown. E) Defective Microprocessor Circuit Components.
2)	Fuse blows	 A) Collector of the Q401 is shorted to ground. B) Reverse polarity (DC operation). C) Defective D305, IC-301, Q401 and/or associated circuit components.
3)	Does not receive either AM or SSB	 A) Defective PLL circuit. Proceed to PLL OPERATION CHECK (RECEIVE MODE). B) Defective RF Stage amplifier Q18, Q19, Mix Stage Q20 and/or associated circuit components. C) Defective D32, Q25 and/or associated circuit components.
4)	No sound TX SSB : OK	A) Defective AF amplifier. Proceed to AF OPERATION CHECK.
5)	No sound TX AM SSB : OK	 A) Defective speaker or defective EXT SPKR jack. B) Faulty Squelch control circuit. C) Defective Relay RY-2.
6)	Does not transmit AM or SSB	 A) Defective PLL circuit. Proceed to PLL OPERATION CHECK (TRANSMIT MODE). B) Defective Q12, Q13, Q14 and/or associated circuit com- ponents. C) Defective IC-10, Q34, Q35, IC-8 and/or assoicated circuit components.
7)	Does not transmit AM. SSB : OK	 A) Defective Q40, Q41, Q42 and/or associated circuit components. B) Defective Relay RY-1.
8)	Programming/Channel Keyboard does not function	A) Defective Key switch and/or Microprocessor circuit components.
9)	SQUELCH Control does not function	 A) Defective VR-402. B) Defective IC-9 and/or associated circuit components.
10)	Poor sensitivity TX : OK	 A) Faulty AGC circuit Q24, Q30, Q31, D46, D47 and/or associated circuit components. B) Defective Q21, Q22, Q23 and/or associated circuit components.
11)	No modulation on AM. RX AM SSB : OK	A) Defective Q36 and/or associated circuit components.

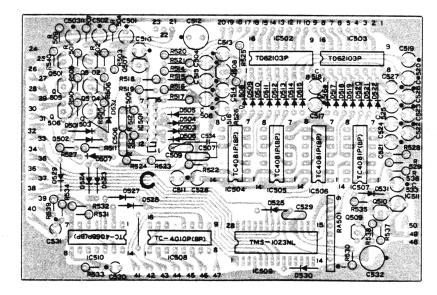
	Symptom	Possible Cause
12)	RX AGC does not function	 A) Defective Q24, Q30, Q31, D46, D47 and/or associated circuit components.
13)	AMC does not function	 A) Defective Q32, Q33, D52, D53, D54, D55 and/or associated circuit components.
14)	Noise Blanker and ANL does not function	 A) Defective Q26, Q27, IC-6, IC-7 and/or associated circuit components. B) Defective D33 and/or associated circuit components. C) Defective NB/ANL switch.
15)	ALC does not function	A) Defective D6, D7, D8, D9, D10, D11, Q8, Q9 and/or associ- ated circuit components.
16)	PA does not function CB : OK	A) Defective PA switch.B) Defective PA SPKR jack.
17)	RF GAIN control does not function	A) Defective Q15 and/or associated circuit components.
18)	CLARIFIER does not function	 A) Defective D1, D2, Q1, Q2 and/or associated circuit components.
19)	Clock does not function	 A) Defective IC-601 and/or associated circuit components. You may find the Special Service Information Bulletin on clock models for clock radios helpful in trouble- shooting/servicing clock portion.

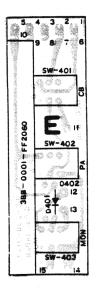

- 26 -

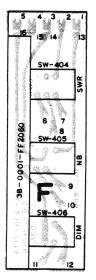


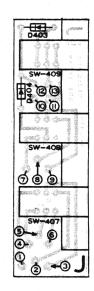
NOTE: Oscilloscope is necessary and helpful for troubleshooting of Microprocessor portion because the system is clocked and dynamic.

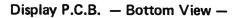

PARTS LOCATION

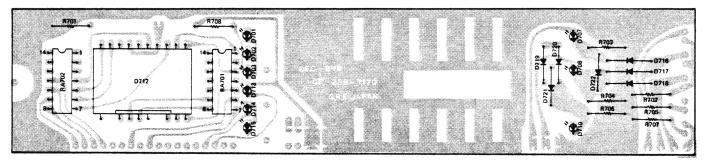


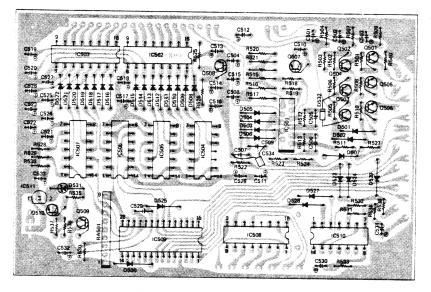

Display P.C.B. - Top View -

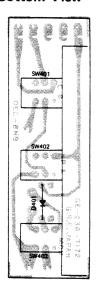

M.P.U. P.C.B. - Top View -

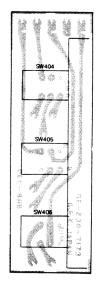

Function (24HR, AUTO, POWER) SW P.C.B. - Top View -

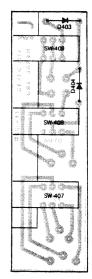


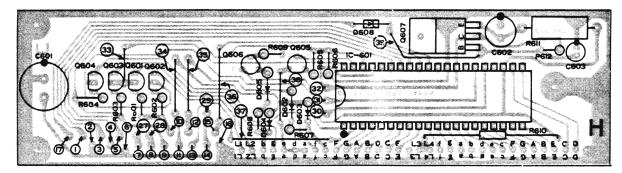

Function (SWR CAL, NB/ANL, DIMMER) SW P.C.B. — Top View —

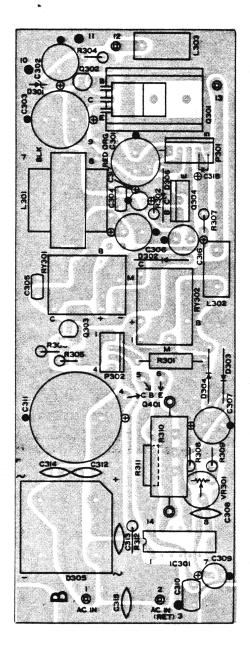

Mode (CB, PA, MON) SW P.C.B. — Top View —

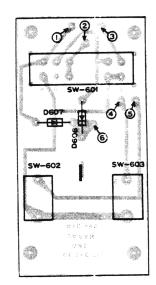


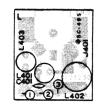

M.P.U. P.C.B. - Bottom View -

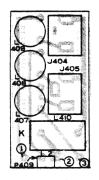

Mode (CB, PA, MON) SW P.C.B. — Bottom View —

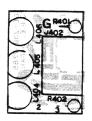

Function (SWR CAL, NB/ANL, DIMMER) SW P.C.B. — Bottom View —

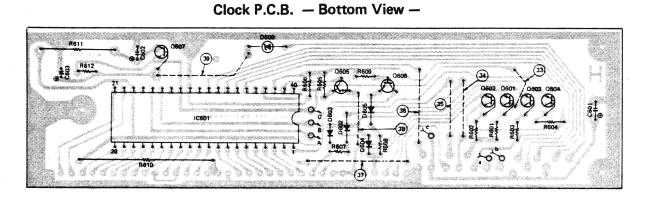

Function (24 HR, AUTO, POWER) SW P.C.B. - Bottom View -


Clock P.C.B. - Top View -

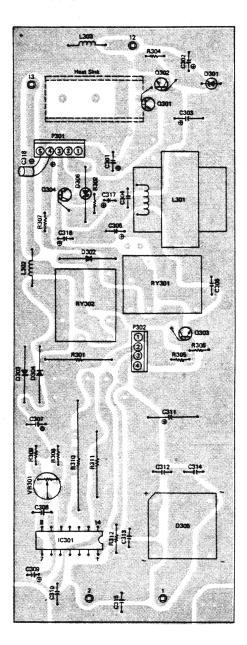

Power Supply P.C.B. - Top View -


Clock Control P.C.B. — Top View --

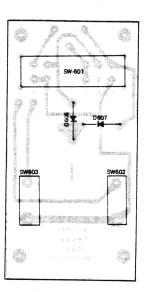

Mic Jack P.C.B. - Top View -

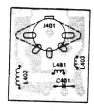


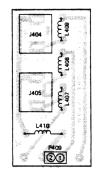
PA/EXT SPKR Jack P.C.B. — Top View —

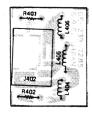


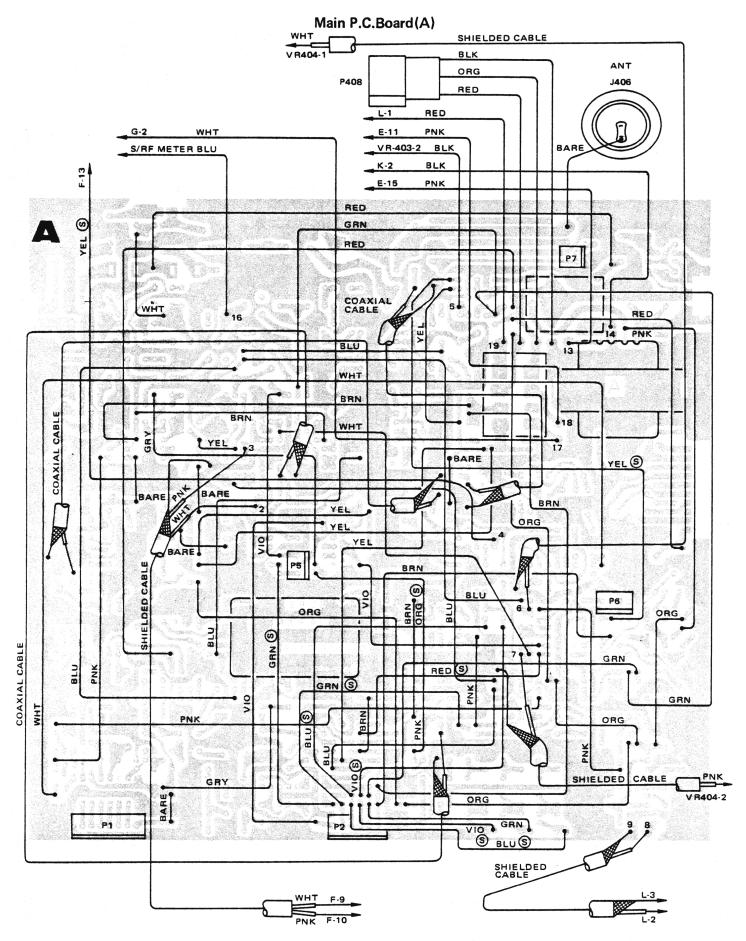
Phone Jack P.C.B. - Top View -

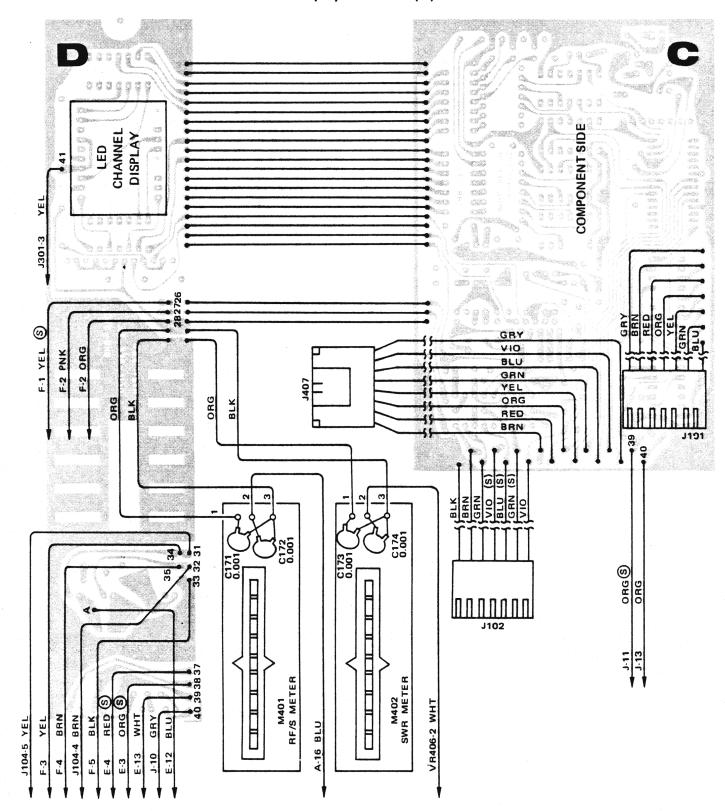


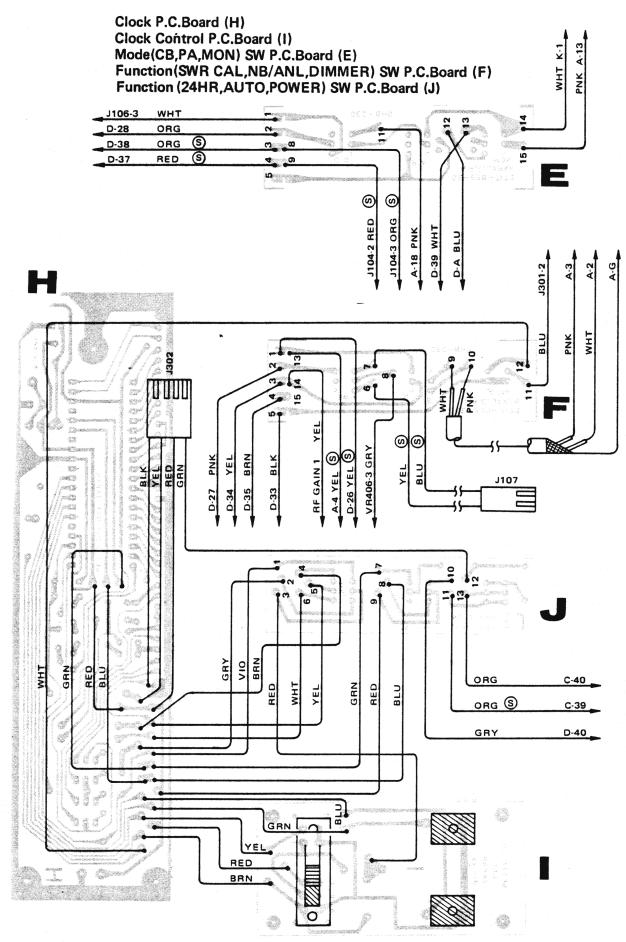

Power Supply P.C.B. - Bottom View -


Clock Control P.C.B. - Bottom View -

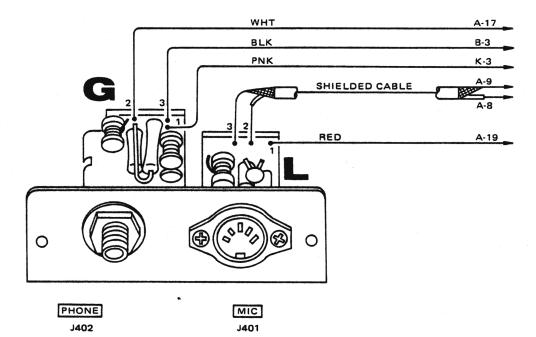

Mic Jack P.C.B. – Bottom View –

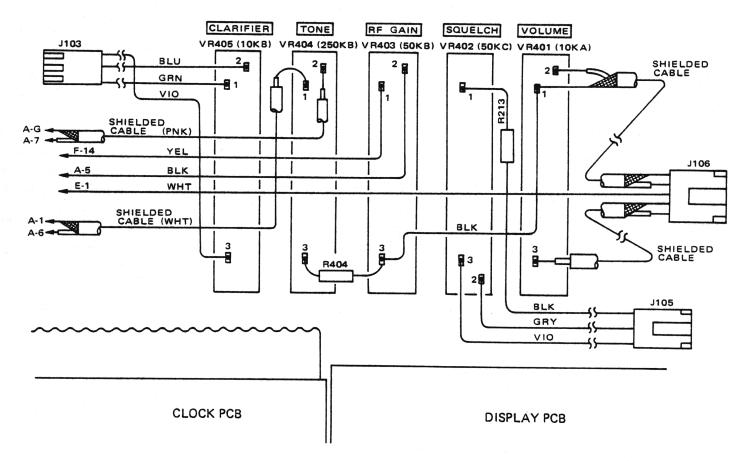

PA/EXT SPKR Jack — Bottom View —


Phone Jack P.C.B. - Bottom View -

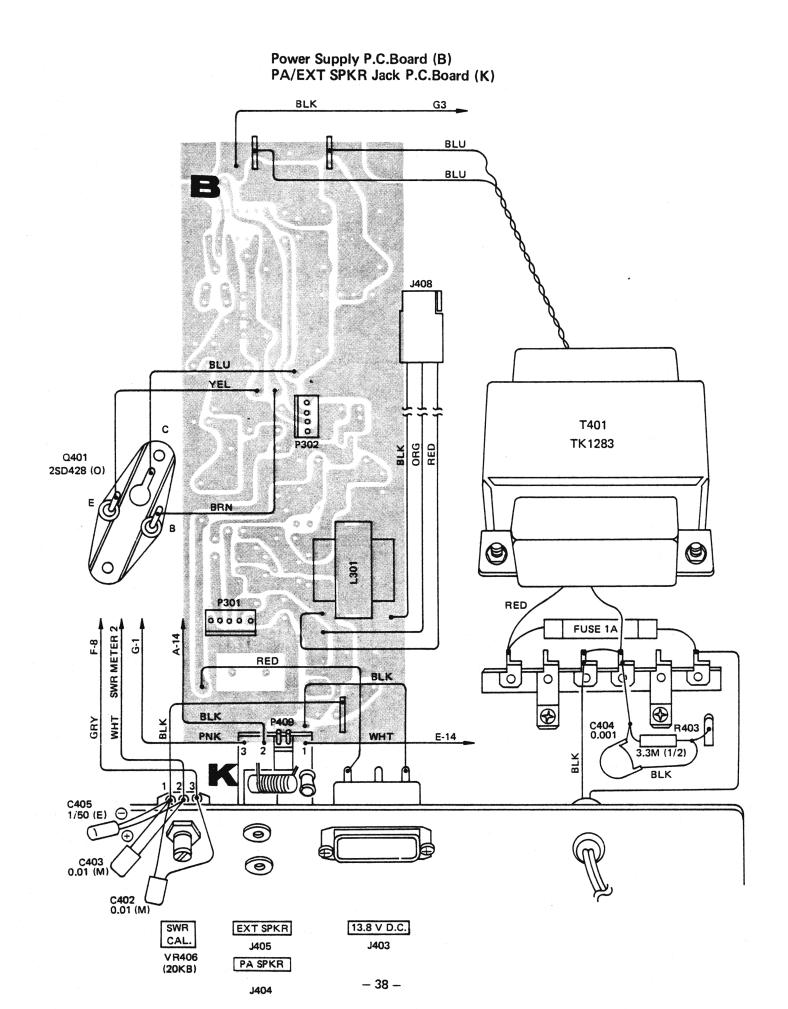


WIRING DIAGRAM


M.P.U. P.C.Board (C) Display P.C.Board (D)



- 36 -


Phone Jack P.C.Board (G) Mick Jack P.C.Board (L)

CONTROLS

- 37 -

ELECTRICAL PARTS LIST

		CAPACIT	ORS		Ref. No.	Value	Voltage (V)	Tolerance (%)	Material
NOTE	Temperature cha				C54	4pF	50	±0.25pF	Ceramic (C
	(C) NP				C55	10µF	16	-10, +50	Electrolytic
	(R) N2	20			C56	0.01µF	50	-20, +80	Ceramic
	(TH) N4	70			C57	Not used			
	(U) N7	50			C58	0.01µF	50	-20, +80	Ceramic
					C59	10pF	50	±0.5pF	Ceramic (C
0-6 11	No.	Voltage	Tolerance		C60	10µF	16	-10, +50	Electrolytic
Ref. No	o. Value	(V)	(%)	Material	C61	0.01µF	50	-20, +80	Ceramic
	and the property of the second second				C62	0.022µF	50	-20, +80	Ceramic
C1	0.01µF	50	-20, +80	Ceramic	C63	0.01µF	50	±10	Mylar
C2	0.01µF	50	-20, +80	Ceramic	C64	0.001µF	50	±10	Mylar
C3	4pF	50	±0.25pF	Ceramic (C)	C65	0.01µF	50	±10	Mylar
C4	10pF	50	±0.5pF	Ceramic (TH)	C66	0.01µF	50	-20, +80	Ceramic
C5	10pF	50	±0.5pF	Ceramic (U)	C67	0.01µF	50	-20, +80	Ceramic
C6	10µF	16	-10, +50	Electrolytic	C68	0.01µF	50	±10	Mylar
C7	0.01µF	50	-20, +80	Ceramic	C69	220pF	50	±10	Ceramic
C8	10pF	50	±0.5pF	Ceramic (R)	C70	10µF	16	-10, +50	Electrolytic
C9	150pF	50	±10	Ceramic (R)	C71	0.01µF	50	-20, +80	Ceramic
C10	0.01µF	50	±10	Mylar	C72	0.039µF	50	±10	Mylar
C11	0.01µF	50	±10	Mylar	C73	0.039µF	50	±10	Mylar
C12	220pF	50	±10	Ceramic	C74	68pF	50	±10	Ceramic (C
C13	56pF	50	±10	Ceramic (C)	C75	0.039µF	50	±10	Mylar
C14	0.01µF	50	±10	Mylar	C76	0.039µF	50	±10	Mylar
C15	18pF	50	±10	Ceramic (C)	C77	0.039µF	50	±10	Mylar
C16	27pF	50	±10	Ceramic (C)	C78	5.039μF	50		
C17	33pF	50	±10	Ceramic (C)	C79	•		±0.25pF	Ceramic (C
C18	0.01µF	50	-20, +80	Ceramic	C80	0.022µF	50 50	±10	Mylar
C19	6.8µF	10	±20	Tantalum		0.01µF	50 50	±10	Mylar
C20	0.01µF	50	±10	Mylar	C81 C82	0.01µF	50	-20, +80	Ceramic
C21	0.01µF	50	-20, +80	Ceramic		47pF	50	±10	Ceramic (C
C22	0.01µF	50	-20, +80	Ceramic	C83	0.022µF	50	±10	Mylar
C23	33µF	16	-10, +50	Electrolytic	C84	1μF	50	-10, +75	Electrolytic
C24	39pF	50	±10	Ceramic (C)	C85	22pF	50	±10	Ceramic (C
C25	5pF	50	±0.25pF	Ceramic (C)	C86	330pF	50	±10	Ceramic
C26	4pF	50	±0.25pF	Ceramic (C)	C87	5pF	50	±0.25pF	Ceramic (C
C27	0.1µF	35	±20	Tantalum	C88	0.1µF	35	±20	Tantalum
C28	4.7µF	10	±20	Tantalum	C89	0.01µF	50	±10	Mylar
C29	1µF	50	-10, +75	Electrolytic	C90	47pF	50	±10	Ceramic (C
C30	0.01µF	50	-20, +80	Ceramic	C91	0.01µF	50	±10	Mylar
C31	0.01µF	50	-20, +80	Ceramic	C92	0.022µF	50	±10	Mylar
C32	0.01µF	50	±10	Mylar	C93	22pF	50	±10	Ceramic (C
C33	0.01µF	50	-20, +80	Ceramic	C94	100pF	50	±10	Ceramic (C
C34	3pF	50	±0.25pF	Ceramic (C)	C95	0.039µF	50	±10	Mylar
	• 220pF	50	±0.25pr	Ceramic (C)	C96	0.022µF	50	±10	Mylar
C36	Not used	50	-10		C97	47µF	10	-10, +50	Electrolytic
C37	1µF	50	-10, +75	Electrolutio	C98	150pF	50	±10	Ceramic
C38	0.01µF	50	-20, +80	Electrolytic	C99	10µF	16	-10, +50	Electrolytic
C39	0.001µF	50	-20, +80 ±10	Ceramic					
C40	68pF	50	±10	Mylar	C100	5pF	50	±0.25pF	Ceramic (C
C40 C41	0.01µF	50		Ceramic (C)	C101	0.01µF	50	-20, +80	Ceramic
C41	0.01µF	50	-20, +80	Ceramic	C102	0.01µF	50	±10	Mylar
		1.	-20, +80	Ceramic	C103	10pF	50	±0.5pF	Ceramic (C
C43 C44	0.01µF	50 50	-20, +80	Ceramic	C104	0.01µF	50	-20, +80	Ceramic
	56pF	1	±10	Ceramic (C)	C105	0.01µF	50	±10	Mylar
C45	180pF	50	±10	Ceramic (C)	C106	0.01µF	50	±10	Mylar
C46	0.01µF	50	±10	Mylar	C107	100pF	50	±10	Ceramic
C47	330pF	250	±5	Polystyrene	C108	0.01µF	50	-20, +80	Ceramic
C48	470pF	500	±5	Polystyrene	C109	0.01µF	50	-20, +80	Ceramic
C49	150pF	250	±5	Polystyrene	C110	0.01µF	50	-20, +80	Ceramic
C50	47pF	50	±10	Ceramic (C)	C111	Not used			
C51	150pF	250	±5	Polystyrene	C112	100pF	50	±10	Ceramic (C
C52	0.01µF	50	-20, +80	Ceramic	C113	82pF	50	±10	Ceramic (C
C53	0.01µF	50	-20, +80	Ceramic	C114	82pF	50	±10	Ceramic (C

- 39 -

Ref. No.	Value	Voltage (V)	Tolerance (%)	Material	Ref. No.	Value	Voltage (V)	Tolerance (%)	Material
C115	56pF	50	±10	Ceramic (C)	C301	470µF	16	-10, +50	Electrolytic
C116	0.01µF	50	-20, +80	Ceramic	C302	220µF	16	-10, +50	Electrolytic
C117	39pF	50	±10	Ceramic (R)	C303	1000µF	16	-10, +50	Electrolytic
C118	12pF	50	±10	Ceramic (C)	C304	0.022µF	50	±10	Mylar
C119	0.001µF	50	±10	Mylar	C305	0.022µF	50	±10	Mylar
C120	18pF	50	±10	Ceramic (C)	C306	100µF	16	-10, +50	Electrolytic
C121	18pF	50	±10	Ceramic (C)	C307	220µF	16	-10, +50	Electrolytic
C122	18pF	50	±10	Ceramic (C)	C308	0.01µF	50	-20, +80	Ceramic
C123	2.2µF	16	±20	Tantalum	C309	10µF	16	-10, +50	Electrolytic
C124	10µF	16	-10, +50	Electrolytic	C310	0.039µF	50	±10	Mylar
C125	10µF	16	-10, +50	Electrolytic	C311	4700µF	35	-10, +30	Electrolytic
C126	10µF	16	-10, +50	Electrolytic	C312	0.01µF	50	-20, +80	Ceramic
C120	100µF	10	-10, +50	Electrolytic	C313	0.01µF	50	-20, +80	Ceramic
C128	1µF	50	-10, +75	Electrolytic	C314	0.01µF	50	-20, +80	Ceramic
C129	0.0039µF	50	±10	Mylar	C315	0.01µF	50	-20, +80	Ceramic
C129	4.7µF	35	-10, +75	Electrolytic	C316	47µF	16	-10, +50	Electrolytic
C130	4.7μF 22μF	6.3	±20		C317	1µF	50	-10, +75	Electrolytic
C131	10µF	16	-10, +50	Tantalum Electrolytic	C318	4.7µF	35	-10, +75	Electrolytic
C132		10	-10, +50	Electrolytic					
C133	Not used 33µF	16	-10, +50	Electrolytic					
			±10	Electrolytic	C401	0.001µF	50	-20, +80	Ceramic
C135	0.033µF	50 50	±10	Mylar	C402	0.01µF	50	±10	Mylar
C136 C137	0.01µF	16	-10, +50	Mylar	C403	0.01µF	50	±10	Mylar
C137	10µF	50	-10, +50	Electrolytic	C404	0.001µF	150	-20, +80	Ceramic
	1μF	50	±10	Electrolytic	C405	1µF	50	-10, +75	Electrolytic
C139 C140	0.01µF 0.001µF	50	±10	Mylar Mylar					
C140	0.0068µF	50	±10		C501	10µF	16	-10, +50	Electrolytic
C141	33µF	16	-10, +50	Mylar	C502	10µF	16	-10, +50	Electrolytic
C142	0.01µF	50	±10	Electrolytic Mylar	C503	10µF	16	-10, +50	Electrolytic
		50			C504	10µF	16	-10, +50	Electrolytic
C144	1µF	50	-10, +75 ±10	Electrolytic	C505	0.01µF	50	±10	Mylar
C145 C146	0.0068µF 10µF	16	-10, +50	Mylar Electrolytic	C506	0.01µF	50	±10	Mylar
	0.056µF		±10	Electrolytic	C507	0.01µF	50	±10	Mylar
C147		50	±10	Mylar	C508	1μF	50	-10, +75	Electrolytic
C148	0.022µF	50	10	Mylar	C509	0.001µF	50	±10	Mylar
C149 C150	Not used	35	-10, +75	Electrolytic	C510	1μF	50	-10, +75	Electrolytic
C150	3.3µF	50	-10, +75	Electrolytic	C511	10µF	16	-10, +50	Electrolytic
C151	1μF	50	±10	Mylar	C512	100µF	10	-10, +50	Electrolytic
C152	0.022µF	50	±10	Mylar	C513	1μF	50	-10, +75	Electrolytic
C153	0.01μF 10μF	16	-10, +50	Electrolytic	C514	1µF	50	-10, +75	Electrolytic
	0.056µF	50	1		C515	1μF	50	-10, +75	Electrolytic
C155	0.030µF	1	±10 ±10	Mylar	C516	1µF	50	-10, +75	Electrolytic
C156		50	±10	Mylar	C517	1µF	50	-10, +75	Electrolytic
C157 C158	0.047μF 0.022μF	50 50	±10	Mylar Mylar	C518	1µF	50	-10, +75	Electrolytic
					C519	1µF	50	-10, +75	Electrolytic
C159 C160	1000μF 4.7μF	16 35	-10, +50 -10, +75	Electrolytic Electrolytic	C520	1μF	50	-10, +75	Electrolytic
C160	4.7μF 100μF	10	-10, +75	Electrolytic	C521	1µF	50	-10, +75	Electrolytic
C161	47μF	10	-10, +50	Electrolytic	C522	1µF	50	-10, +75	Electrolytic
C163	0.22µF	50	±10	Mylar	C523	1µF	50	-10, +75	Electrolytic
					C524	1µF	50	-10, +75	Electrolytic
C164 C165	1000μF 470μF	16 16	10, +50 10, +50	Electrolytic	C525	1µF	50	-10, +75	Electrolytic
C165	220µF	10		Electrolytic	C526	1µF	50	-10, +75	Electrolytic
C166	0.01µF	50	-10, +50 -20, +80	Electrolytic Ceramic	C527	1µF	50	-10, +75	Electrolytic
C167	5pF	50	_20, +80 ±0.25pF	Ceramic (C)	C528	10µF	16	-10, +50	Electrolytic
C168	150pF	50	±0.25pF		C529	100pF	50	±10	Ceramic
C169	0.01µF	50	-20, +80	Ceramic Ceramic	C530	2.2µF	16	±20	Tantalum
C170	0.001µF	50	-20, +80		C531	6.8µF	10	±20	Tantalum
C171	0.001µF	50	-20, +80	Ceramic	C532	100µF	10	-10, +50	Electrolytic
C172	0.001µF	50	-20, +80	Ceramic	C533	100µF	16	-10, +50	Electrolytic
	0.001µF	50	-20, +80	Ceramic Ceramic	C534	0.01µF	50	±10	Mylar
C174							,		

Ref. No.	. No. Value V		Tolerance (%)	Material
C601	470µF	16	-10, +50	Electrolytic
C602	47µF	16	-10, +50	Electrolytic
C603	1μF	50	-10, +75	Electrolytic

	COILS & TRANS	FORMERS	
Ref. No.	Description	RS Part No.	MFR's Part No.
L1	Inductor (100µF)	CB-2427	LF1-101K
L2	OSC Coil	CA-4999	GR-8560
L3	Inductor (270µH)	CB-2429	LF1-271K
L4	Inductor (180µH)	CB-2428	LF1-181K
L5	Choke Coil	CB-2195	4LNC-027
L6	Driver Coil	CB-2426	10PND-142
L7	Inductor (180µH)	CB-2428	LF1-181K
L8	Choke Coil	CB-2195	4LNC-027
L9	Output Coil	CA-2268	10PNP-028
L10	Output Coil	CA-2268	10PNP-028
L11	Choke Coil	CA-3488	4LNC-092
L12	Choke Coil	CA-3488	4LNC-092
L13	Inductor (470µH)	C-0835	LF1-471K
L14	Inductor (100µH)	CB-2427	LF1-101K
L15	Inductor (10µH)	CB-2196	LF1-100K
L16	Inductor (470µH)	C-0835	LF1-471K
L17	Inductor (470µH)	C-0835	LF1-471K
L18	Inductor (470µH)	C-0835	LF1-471K
L19	Inductor (470µH)	C-0835	LF1-471K
L20	Inductor (10µH)	CB-2196	LF1-100K
L301	Choke Transformer	CB-2430	E5N08
L302	Choke Coil	CB-2170	6LNC-053
L303	Choke Coil	CB-2170	6LNC-053
L401	Inductor (10µH)	CB-2196	LF1-100K
L402	Choke Coil	CA-3182	3B-037
L403	Inductor (10µH)	CB-2196	LF1-100K
L404	Choke Coil	CA-3182	3B-037
L405	Choke Coil	CA-3182	3B-037
L406	Choke Coil	CA-3182	3B-037
L407	Choke Coil	CA-3182	3B-037
L408	Choke Coil	CA-3182	3B-037
L409	Choke Coil	CA-3182	3B-037
L410	Choke Coil	CB-2170	6LNC-053
T1	VCO (19MHz)	CA-5001	GR-K574
T2	VCO (19MHz)	CA-5000	GR-K573
Т3	B.P.F. (27MHz)	CA-3885	GR-K15950
T4	B.P.F. (27MHz)	CA-3885	GR-K15950
T5	B.P.F. (27MHz)	CA-3885	GR-K15950
Т6	TX (27MHz)	CA-5002	TR-2
Т7	RF (27MHz)	CA-3811	GR-K23345
T8	RF (27MHz)	CA-4998	GR-K575
Т9	IF (7.8MHz)	CA-3809	GR-K532
T10	IF (7.8MHz)	CA-3809	GR-K532
T11	IF (7.8MHz)	CA-3810	GR-K533
T12	Noise Blanker	CA-3738	GR-K519
T13	Noise Blanker	CA-3738	GR-K519
T14	Modulation Transformer	TD-0184	E7Z19
T404		TA 0300	TK 1000
T401	Power Transformer	TA-0702	TK-1283

CRYSTALS & CRYSTAL FILTERS									
Ref. No.	Description	RS Part No.	MFR's Part No.						
X1	Crystal	MX-2309	10.240MHz						
X2	Crystal	MX-2370	17.8875MHz						
X3	Crystal	MX-2371	7.7975MHz						
X4	Crystal	MX-2372	7.800MHz						
X5	Crystal	MX-2331	7.8025MHz						
XF1	Filter (7.8MHz)	C-0964	HG-7A						

	DIOD	DES	
Ref. No.	Description	RS Part No.	MFR's Part No.
D1, 2	Vari-Cap	DX-1196	1S2789(W)
D3, 4	Zener (6.2V)	DX-1194	05Z6.2(L)
D5 7	Silicon	DX-0270	1S1555
D8	Zener (5.1V)	DX-1193	05Z5.1(L)
D9 - 11	Germanium	DX-0161	1N60
D12	Silicon	DX-0270	1\$1555
D13, 14 D15	Silicon Zener (33V)	DX-1131 DX-1195	S5277B 1Z33-A
D16, 17	Germanium	DX-0161	1233-A 1N60
D18	Silicon	DX-0101	1\$1555
D19, 20	Not used	DAGENO	101000
D21	Silicon	DX-0270	1\$1555
D22 - 24	Germanium	DX-0161	1N60
D25	Silicon	DX-0270	1\$1555
D26, 27	Germanium	DX-0161	1N60
D28, 29	Not used		
D30	Silicon	DX-0270	1\$1555
D31 - 33	Germanium	DX-0161	1N60
D34 - 36	Silicon	DX-0270	1\$1555
D37 - 39 D40	Germanium	DX-0161	1N60
D40 D41 – 43	Silicon Germanium	DX-0270 DX-0161	1\$1555
D41 - 43 D44, 45	Silicon	DX-0181	1N60 1S1555
D46, 47	Germanium	DX-0270	1N60
D48, 49	Silicon	DX-0270	1\$1555
D50	Germanium	DX-0161	1N60
D51, 52	Silicon	DX-0270	1\$1555
D53	Zener (5.1V)	DX-1193	05Z5.1(L)
D54, 55	Germanium	DX-0161	1N60
D56	Zener (4V)	DX-1192	HZ4C2
D57, 58	Silicon	DX-0270	1S1555
D59, 60	Silicon	DX-1131	S5277B
D61 - 63	Silicon	DX-0270	1S1555
D64	Germanium	DX-0161	1N60
D301	Zener (10V)	DX-1034	05Z10(L)
D302 - 304	Silicon	DX-1131	S5277B
D305	Rectifier	DX-0447	S5-VB-20
D306	Zener (5.1V)	DX-1193	05Z5.1(L)
D401 D402	Silicon Not used	DX-0270	1S1555
D403, 404	Silicon	DX-0270	1\$1555
D501 - 525 D526	Silicon Not used	DX-0270	1S1555
D527 - 530	Silicon	DX-0270	1S1555
D531	Zener (6.2V)	DX-1194	05Z6.2(L)
D532	Silicon	DX-0270	1S1555
D601	LED (Clock Ind.)	L-0984	SL-1462-10C
D602	Silicon	DX-0270	1\$1555
D603, 604	Germanium	DX-0161	1N60
D605 - 607	Silicon	DX-0270	1\$1555
D608	Zener (5.1V)	DX-1193	05Z5.1(L)
D701 – 711	LED	L-0983	TLR-124
D712	LED (CH Ind.)	L-0982	SL-1261
D713 - 715	LED	L-0983	TLR-124
D716 – 722	Silicon	DX-0270	1S1555

	INTEGRATED CIRCUITS									
Ref. No.	Type No.	Substitute Type No.								
IC1	LC7113									
IC2	KH3207									
IC3, 4	TA7310P									
IC5	TA78L009P									
IC6	SN76600P									
IC7	TA58 or TA78									
IC8	MC1496P	LM1496N								
IC9	TA58 or TA78									
IC10	μPC1170H									
IC11	TC4066P or BP	MC14066								
IC12	TA7222AP									
IC301	TA7089P									
1C501	TA58 or TA78									
IC502, 503	TD62103P									
IC504 - 507	TC4081P or BP									
IC508	TC4010P or BP									
IC509	TMS1023NL									
IC510	TC4066P or BP	MC14066								
IC511	TA78L009P									
IC601	LM8360									

METERS									
Ref. No. Description RS Part No. MFR's Part No.									
M401 M402	S/RF SWR	M-0409 M-0409	LEVEL-M-G.R.E. LEVEL-M-G.R.E.						

RELAYS								
Ref. No.	Description	RS Part No.	MFR's Part No.					
RY1	AM/SSB	R-8106	LZ-12H-P					
RY2	TX/RX	R-8085	MX-2P-0					
RY301	Power ON	R-8106	LZ-12H-P					
RY302	Power ON	R-8106	LZ-12H-ſ					

		RESISTO				Ref. No.	Value	RS Part No.	Watt- age (W)	Toler- ance (%)	Material
		wise specified a W, tolerance ±9		ors are car	bon film,	R57	3.3kΩ	NEE-0230			
Ī			18/	Talan		R58	10kΩ	NEE-0281			
Ref. No.	Value	RS Part No.	Watt- age	Toler- ance	Material	R59	47Ω	NEE-0099			
NOI. NO.	Value	no ratino.	(W)	(%)	Material	R60	10kΩ	NEE-0281			
				()		R61	22kΩ	NEE-0311			
R1	10kΩ	NEE-0281				R62	12kΩ	NEE-0288			
R2	15kΩ	NEE-0297				R63	4.7kΩ	NEE-0247			
R3	10kΩ	NEE-0281				R64	56Ω	NEE-0107			
R4	10kΩ					R65	820Ω	NEE-0187			
R5		NEE-0281				R66	1kΩ	NEE-0196			
R6	10kΩ	NEE-0281				R67	10kΩ				,
	4.7kΩ	NEE-0247						NEE-0281			
R7	100kΩ	NEE-0371				R68	4.7kΩ	NEE-0247			
R8	3.3kΩ	NEE-0230				R69	100Ω	NEE-0132			
R9	10kΩ	NEE-0281				R70	220kΩ	NEE-0396			
R10	10kΩ	NEE-0281				R71	47kΩ	NEE-0340			
R11	10kΩ	NEE-0281				R72	18kΩ	NEE-0303			
R12	1kΩ	NEE-0196				R73	220 Ω	NEE-0149			
R13	82kΩ	NEE-0360				R74	220 Ω	NEE-0149			
R14	1kΩ	NEE-0196				R75	220 Ω	NEE-0149			
R15	56 Ω	NEG-0107	1	±5	Metal	R76	330 Ω	NEE-0159			
R16	10kΩ	NEE-0281		-		R77	330Ω	NEE-0159			
R17	470Ω	NEE-0169				R78	18kΩ	NEE-0303			
R18	39kΩ	NEE-0330				R79	15kΩ	NEE-0297			
R19	220Ω	1				R80	56Ω	NEE-0107			
1		NEE-0149									
R20	150Ω	NEE-0142				R81	4.7kΩ	NEE-0247			
R21	220Ω	NEE-0149				R82	100Ω	NEE-0132			
R22	1.2kΩ	NEE-0199				R83	3.3kΩ	NEE-0230			
R23	33kΩ	NEE-0324				R84	47kΩ	NEE-0340			
R24	33kΩ	NEE-0324				R85	150Ω	NEE-0142			
R25	5.6kΩ	NEE-0257				R86	1 00 Ω	NEE-0132			
R26	10kΩ	NEE-0281				R87	220 Ω	NEE-0149			
R27	1.2kΩ	NEE-0199				R88	10kΩ	NEE-0281			
R28	2.7kΩ	NEE-0224				R89	27kΩ	NEE-0316			
R29	2.2kΩ	NEE-0216				R90	820Ω	NEE-0187			
R30	12kΩ	NEE-0288				R91	470Ω	NEE-0169			
R31	10kΩ	NEE-0281				R92	5.6kΩ	NEE-0257			
R32	33kΩ	NEE-0324				R93	820kΩ	NEE-0440			
R33	4.7kΩ					R94	100kΩ	NEE-0371			
		NEE-0247				R95	220kΩ	NEE-0396			
R34	470Ω	NEE-0169				R96	680kΩ	NEE-0396			
R35	2.7kΩ	NEE-0224									
R36	10Ω	NEE-0063				R97	82kΩ	NEE-0360			
R37	2.2kΩ	NEE-0216				R98	56kΩ	NEE-0345			
R38	82 Ω	NEH-0122	2	±5	Metal	R99	33kΩ	NEE-0324			
R39	1Ω	NEE-0022								1.1	
R40	2.2Ω	NEE-0032				R100	10kΩ	NEE-0281			
R41	39 Ω	NEE-0092				R101	82kΩ	NEE-0360			
R42	10Ω	NEE-0063				R102	10kΩ	NEE-0281			
R43	330Ω	NEE-0159				R103	1kΩ	NEE-0196			
R44	1kΩ	NEE-0196				R104	1kΩ	NEE-0196			(1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
R45	82Ω	NEH-0122	2	±5	Metal	R105	68kΩ	NEE-0354			
R46	1Ω	NEE-0022				R106	2.7kΩ	NEE-0224			
R47	2.2Ω	NEE-0032				R107	2.7kΩ	NEE-0224			
R48	39Ω	NEE-0092				R108	2.2kΩ	NEE-0216			
R49	3.3Ω	NEE-0037				R109	56 Ω	NEE-0107			
R50	150Ω	NEE-0142				R110	330kΩ	NEE-0410			
R50	4.7kΩ					R110	1.5MΩ	NEE-0410			
		NEE-0247									
R52	560Ω	NEE-0176				R112	10kΩ	NEE-0281			
R53	2.2kΩ	NEE-0216				R113	180kΩ	NEE-0387			
R54	100Ω	NEE-0132				R114	6.8kΩ	NEE-0262			
R55	47Ω	NEE-0099				R115	68kΩ	NEE-0354			
R56	3.3MΩ	NFF-0458	1/2	±10	Solid	R116	2.2kΩ	NEE-0216			

Ref. No.	Value	RS Part No.	Watt- age (W)	Toler- ance (%)	Material	Ref. No.	Value	RS Part No.	Watt age (W)	Toler- ance (%)	Material
R117	22kΩ	NEE-0311				R178	1MΩ	NEE-0445			
R118	10kΩ	NEE-0281				R179	33Ω	NEE-0087			
R119	22kΩ	NEE-0311				R180	10kΩ	NEE-0281			
R120	10kΩ	NEE-0281				R181	10kΩ	NEE-0281			
R121	1kΩ	NEE-0196				R182	10kΩ	NEE-0281			
R122	3.3kΩ	NEE-0230				R183	10kΩ	NEE-0281			
R123	1.2kΩ	NEE-0199	1			R184	10kΩ	NEE-0281			
R124	56Ω	NEE-0107				R185	1.5MΩ	NEE-0450			
R125	56Ω	NEE-0107				R186	1kΩ	NEE-0196			
R126	1kΩ	NEE-0196				R187	3.3kΩ	NEE-0230			
R127	680Ω	NEE-0183				R188	270Ω	NEE-0155			
R128	8.2kΩ	NEE-0271				R189	2.2kΩ	NEE-0216			
R129	560Ω	NEE-0176				R190	2.2kΩ	NEE-0216	· ·		
R130	1kΩ	NEE-0196				R190	2.2k32 2.2kΩ	NEE-0216			
R131	560Ω	NEE-0176				R192	560Ω	NEE-0210			
R132	1kΩ	NEE-0196					330Ω				
R133	1kΩ	NEE-0196				R193		NEE-0159			
R134	470Ω	NEE-0190				R194	820Ω	NEE-0187			
R134 R135	470Ω	NEE-0169				R195	2.2kΩ	NEE-0216			
R136	2.2kΩ					R196	10kΩ	NEE-0281			
		NEE-0216				R197	10kΩ	NEE-0281			
R137	2.2kΩ	NEE-0216				R198	220 Ω	NEE-0149			
R138	150kΩ	NEE-0384				R199	10kΩ	NEE-0281			
R139	2.2kΩ	NEE-0216									
R140	47kΩ	NEE-0340				R200	1kΩ	NEE-0196			
R141	47kΩ	NEE-0340				R201	10kΩ	NEE-0281			
R142	47kΩ	NEE-0340				R202	12kΩ	NEE-0288			
R143	4.7kΩ	NEE-0247				R203	18kΩ	NEE-0303			
R144	220kΩ	NEE-0396				R204	3.9kΩ	NEE-0237			
R145	4.7kΩ	NEE-0247				R205	1 00 kΩ	NEE-0371			
R146	47kΩ	NEE-0340				R206	3.3kΩ	NEE-0230			
R147	10kΩ	NEE-0281				R207	10kΩ	NEE-0281			
R148	2.2MΩ	NEE-0454				R208	5.6kΩ	NEE-0257			
R149	4.7kΩ	NEE-0247				R209	Not used			<u>.</u>	
R150	15kΩ	NEE-0297				R210	100kΩ	NEE-0371			
R151	10kΩ	NEE-0281				R211	330kΩ	NEE-0410			
R152	10kΩ	NEE-0281				R212	180kΩ	NEE-0387			
R153	10kΩ	NEE-0281				R213	47kΩ	NEE-0340			
R154	4.7kΩ	NEE-0247				R214	82Ω	NEE-0122			
R155	1.5kΩ	NEE-0206							· .		
R156	10kΩ	NEE-0281				R301	22Ω	NEG-0078	1	±5	Metal
R157	220kΩ	NEE-0396				R302	270Ω	NEE-0155			
R158	22kΩ	NEE-0311				R303	Not used				
R159	Not used				1	R304	220Ω	NEE-0149			
R160	10kΩ	NEE-0281				R305	2.2kΩ	NEE-0216			
R161	4.7kΩ	NEE-0247				R306	4.7kΩ	NEE-0247			
R162	100kΩ	NEE-0371				R307	22Ω	NEE-0078			
R163	220Ω	NEE-0149				R308	10kΩ	NEE-0281			
R164	2.2kΩ	NEE-0216				R309	3.3kΩ	NEE-0230	1		
R165	10kΩ	NEE-0281				R310	0.15Ω		5	±10	Cement
R166	270kΩ	NEE-0402				R311	68Ω	NEG-0111	1	±5	Metal
R167	10kΩ	NEE-0281				R312	100kΩ	NEE-0371			
R168	470Ω	NEE-0169									
R169	1M Ω	NEE-0445				R401	2.2Ω	NEG-0032	1	±5	Metal
R170	1kΩ	NEE-0196				R401	2.232 82Ω	NEG-0032	1	17 ±5	Metal
R171	100Ω	NEE-0132				R402	8232 3.3MΩ	NFF-0458		±10	Solid
R172	680Ω	NEE-0183							1/2	±10	20110
R173	56kΩ	NEE-0185				R404	10kΩ	NEE-0281			
R174	4.7kΩ	NEE-0345				Drat		1000			
R175	4.7K32 680Ω					R501	2.2kΩ	NEE-0216			
	1	NEE-0183				R502	10kΩ	NEE-0281			
R176	3.9kΩ	NEE-0237				R503	10kΩ	NEE-0281			
R177	1kΩ	NEE-0196	1	1	1	R504	10kΩ	NEE-0281			

Ref. No.	Value	RS Part No.	Watt- age (W)	Toler- ance (%)	Material
R505	3.3kΩ	NEE-0230			
R506	10kΩ	NEE-0281			
R507	10kΩ	NEE-0281			
R508	3.3kΩ	NEE-0230			
R509	10kΩ	NEE-0281			
R510	3.3kΩ	NEE-0230			
R511	10kΩ	NEE-0281			
R512	470kΩ	NEE-0423			
R513	470kΩ	NEE-0423			
R514	10kΩ	NEE-0281			
R515	10kΩ	NEE-0281			
R516	4.7kΩ	NEE-0247			
R517	10kΩ	NEE-0281			
R518	100kΩ	NEE-0371			
R519	100kΩ	NEE-0371			
R520	100Ω	NEE-0132			
R521	470kΩ	NEE-0423			
R522	22kΩ	NEE-0311			
R523	10kΩ	NEE-0281			
R524	10kΩ	NEE-0281			
R525	3.3kΩ	NEE-0230			
R526	10kΩ	NEE-0281			
R527	100kΩ	NEE-0371			
R528	56kΩ	NEE-0345			
R529	10kΩ	NEE-0281			
R530	47kΩ	NEE-0340			
R531	100kΩ	NEE-0371			
R532	100kΩ	NEE-0371			
R533	5.6kΩ	NEE-0257			
R534	68kΩ	NEE-0354			
R535	10kΩ	NEE-0281			
R536	10kΩ	NEE-0281		1	
R537	2.2kΩ	NEE-0216			
R538	3.3kΩ	NEE-0230			
R539	10kΩ	NEE-0281			
R540	10kΩ	NEE-0281			
R601	100kΩ	NEE-0371			
R602	100kΩ	NEE-0371			
R603	100kΩ	NEE-0371	· · · ·		
R604	100kΩ	NEE-0371			
R605	100kΩ	NEE-0371			
R606	10kΩ	NEE-0281		1	
R607	470Ω	NEE-0169			
R608	1.5kΩ	NEE-0206			
R609	33kΩ	NEE-0324			
R610	680Ω	NEE-0183			
R611	68 Ω	NEH-0111	2	±5	Metal
R612	270Ω	NEE-0155			
R701	3.3kΩ	NEE-0230			
R702	3.3kΩ	NEE-0230			
R703	3.3kΩ	NEE-0230			
R704	3.3kΩ	NEE-0230			
R705	3.3kΩ	NEE-0230			
R706	3.3kΩ	NEE-0230			
R707	3.3kΩ	NEE-0230			
R708	3.3kΩ	NEE-0230			

RESISTOR ARRAYS				
Ref. No. Description RS Part No. MFR's Part No.				
RA501	56kΩ x 8	RX-0082	EXB-P88-563M	
RA701 RA702	2.2kΩ x 7 2.2kΩ x 7	RX-0083 RX-0083	EXB-RB7-222M EXB-RB7-222M	

SWITCHES				
Ref. No.	Description	RS Part No.	MFR's Part No.	
	Mode SW Ass'y	S-0905	3BB-0001FF2060	
SW401 SW402 SW403	CB PA MON			
	Function SW Ass'y	S-0907	3B-0001FF2060	
SW404 SW405 SW406	SWR CAL NB/ANL DIMMER			
	Function SW Ass'y	S-0907	3B-0001FF2060	
SW407 SW408 SW409	24HR AUTO POWER			
SW601	Clock Function SW (AUTO SET/RUN/ TIME SET/SEC)	S-2499	SQP-24-04P	
SW602	Clock Function SW (FAST)	S-0906	KS-R11-010811-01	
SW603	Clock Function SW (SLOW)	S-0906	KS-R11-010811-01	

THERMISTORS				
Ref. No. Description RS Part No. MFR's Part No.				
TH1, 2 TH3 TH4 – 6	Thermistor (60Ω) Thermistor (100Ω) Thermistor $(10k\Omega)$	T-1206 T-1207 T-1208	M-60 M-100 M-10K	

VARIABLE CAPACITORS						
Ref. No. Description RS Part No. MFR's Part No.						
TC1	Trimmer (20pF)	C-0965	ECV-1ZW20X53N			
TC2	Trimmer (25pF)	C-0966	ECV-1ZW25X53N			
TC3 – 5						

TRANSISTORS			
Ref. No.	Type No.	Substitute Type No.	
Q1, 2	2SC1815(GR)	2SC373	
Q3, 4	2SC1923(O)	2SC784(O)	
Q5, 6	2SC1815(Y)	2SC372(Y)	
Q7 – 10	2SC1815(GR)	2SC373	
Q11	2SC735(O) or (Y)		
Q12	2SC2086		
Q13	2SC2393		
Q14	2SC2394		
Q15, 16	2SC1923(O)	2SC784(O)	
Q17	2SC1815(GR)	2SC373	
Q18	2SC1923(O)	2SC784(O)	
Q19	2SC1815(GR)	2SC373	
0.20	3\$K59(GR)		
Q21 - 24	2SC1815(Y)	2SC372(Y)	
Q25	2SC732(GR)		
Q26, 27	2SC1923(O)	2SC784(O)	
Q28	2SC1815(GR)	2SC373	
0.29	2SC1815(Y)	2SC372(Y)	
Q30	2SC1815(GR)	2SC373	
Q31	25K19(GR)		
Q32 - 36	2SC1815(GR)	2SC373	
Q37, 38	2SA1015(Y)	2SA495(Y)	
Q39	2SC732(GR)		
Q40	2SC1815(GR)	2SC373	
Q41	2SC509(O) or (Y)		
Q42	2SD525(0) or (Y)		
Q43 – 45	2SC1815(GR)	2SC373	
Q46	2SC735(O) or (Y)		
Q47	2SA1015(Y)	2SA495(Y)	
Q301	2SD234(O) or (Y)		
Q302	2SC1815(GR)	2SC373	
Q303	2SC735(O) or (Y)		
Q304	2SC1173(O)		
Q401	2SD428(O)		
Q501	2SA1015(Y)	2SA495(Y)	
Q502 — 508	2SC1815(GR)	2SC373	
Q509	2SA1015(Y)	2SA495(Y)	
Q510	2SC1815(GR)	2SC373	
Q601 - 606	2SC1815(GR)	2SC373	
Q607	2SC1173(O)		

VARIABLE RESISTORS				
Ref. No.	Description	RS Part No.	MFR's Part No.	
VR1	Semi-fixed (10kΩ B)	P-6446	SR-19R 10kB	
VR2	Semi-fixed (22kΩ B)	P-6523	SR-19R 22kB	
VR3	Semi-fixed (10kΩ B)	P-6446	SR-19R 10kB	
VR4	Semi-fixed (4.7kΩ B)	P-6445	SR-19R 4.7kB	
VR5	Semi-fixed (47kΩ B)	P-6444	SR-19R 47kB	
VR6, 7	Semi-fixed (50 ΩB)	P-0836	TM10K(PV)B50	
VR8	Semi-fixed (22kΩ B)	P-6523	SR-19R 22kB	
VR9	Semi-fixed (47kΩ B)	P-6444	SR-19R 47kB	
VR10	Semi-fixed (100Ω B)	P-1351	SR-19R 100B	
VR11, 12	Semi-fixed (47kΩ B)	P-6444	SR-19R 47kB	
VR13	Semi-fixed (22kΩ B)	P-6523	SR-19R 22kB	
VR14	Semi-fixed (470Ω B)	P-1403	SR-19R 470B	
VR301	Semi-fixed (4.7kΩ B)	P-6445	SR-19R 4.7kB	
VR401	VOLUME Control 10kΩ A	P-1927	LE14A013-10kA	
VR402	SQUELCH Control 50kΩ C	P-0861	LE14A114-50kC	
VR403	RF GAIN Control 50kΩ B	P-0862	LE14A013-50kB	
VR404	TONE Control 250kΩ B	P-2101	LE14E030-250kB	
VR405	CLARIFIER Control 10kΩ B	P-0863	LE14E029-10kB	
VR406	SWR CAL Control 20kΩ B	P-1928	VM10A624A20kB	

MISCELLANEOUS			
Ref. No.	Description	RS Part No.	MFR's Part No.
P1	Connector (8P : male)		IL-8P-S3EN2
P2	Connector (7P : male)		IL-7P-S3EN2
P3	Connector (3P : male)		IL-3P-S3EN2
P4	Connector (5P : male)		IL-5P-S3EN2-(N)
P5	Connector (3P : male)		IL-3P-S3EN2
P6	Connector (5P : male)		IL-5P-S3EN2-(N)
P7	Connector (2P : male)		IL-2P-S3EN2
P301	Connector (5P : male)		IL-5P-S3EN2-(N)
P302	Connector (4P : male)		IL-4P-S3EN2
P409	Connector (2P : male)		IL-2P-S3EN2
J101	8P Wire Connector Ass'y		GE-23D-7353
J102	7P Wire Connector Ass'y		GE-23D-7352
J103	3P Wire Connector Ass'y		GE-23D-7347
J104	5P Wire Connector Ass'y		GE-23D-7351
J105	3P Wire Connector Ass'y		GE-23D-7346
J106	5P Wire Connector Ass'y		GE-23D-7349
J107	2P Wire Connector Ass'y		GE-23D-7345
J301	5P Wire Connector Ass'y		GE-23D-7350
J302	4P Wire Connector Ass'y		GE-23D-7348
J401	Mic Jack	J-1008	D5-704B-00S
J402	Phone Jack	J-1007	SG-7625-01
J403	DC 12 V Jack	J-6653	S-10812
J404	PA SPKR Jack	J-0840	SG-8022
J405	EXT SPKR Jack	J-0840	SG-8022
J406	ANT Jack	J-6487	NY-R
J407	8P Wire Connector Ass'y		GE-23D-7354
J409	2P Wire Connector Ass'y		GE-23D-7382
P408, J408	Interconnect Cable Ass'y		GE-23D-7344
TP1 – 8, TP11 – 15	Test Point		CHP-02A
TP9, 10	Crystal Socket (for test point)	J-6652	S2-101P-01

MECHANICAL PARTS LIST

Ref. No.	Description	RS Part No.	MFR's Part No.
(1)	VOLUME Control	P-1927	LE14A013-10kA
(2)	SQUELCH Control	P-0861	LE14A114-50kC
(3)	RF GAIN Control	P-0862	LE14A013-50kB
(4)	TONE Control	P-2101	LE14E030-250kB
(5)	CLARIFIER Control	P-0863	LE14E029-10kB
(6)	SWR CAL Control	P-1928	VM10A624A20kB
(7)	Control Knobs (VOL, SQ, RF, TONE, CLAR)	K-3257	GE-23D-7106
(8)	Mode/Function SW Buttons (CB, PA, MON, SWR CAL, NB/ANL, DIMMER, 24HR, AUTO, POWER)	K-3258	GE-23D-7107
(9)	Clock Function SW Knob	K-3259	GE-23D-7108
(10)	Clock Function SW Buttons (FAST, SLOW)	K-3260	GE-23D-7109
(11)	Top Case Ass'y Top Case Filter Cover Protection Cloth for Speaker Control Panel	Z-4451	GE-23E-7252
(12)	Bottom Cover Ass'y Bottom Cover Protection Cloth (larger) Protection Cloth (smaller) Foot	Z-4455	GE-23E-7422
(13)	Keyboard Ass'y Keyboard 6 Diodes Connector (8P : male) Spacer	K-3256	SCF-55001
(14)	Speaker	S-4785	C100A21G-0311
(15)	Filter Plate	Z-4454	GE-23C-7105
(16)	Masking Plate	RT-1865	GE-23D-7110
(17)	Main Chassis	R 1-1005	
			GE-23A-7098
(18)	Console Chassis	V JOEF	GE-23A-7099
(19)	Main P.C. Board Ass'y	X-7955	GE-23E-7310
(20)	Power Supply P.C. Board Ass'y	X-7956	GE-23E-7301
(21)	M.P.U. P.C. Board Ass'y	X-7957	GE-23E-7302
(22)	Display P.C. Board Ass'y	X-7958	GE-23E-7307
(23)	Clock P.C. Board Ass'y	X-7966	GE-23E-7303
(24)	Clock Control P.C. Board Ass'y	X-7963	GE-23E-7304
(25) (26)	Mode SW (CB, PA, MON) P.C. Board Ass'y Function SW (SWR CAL, NB/ANL, DIMMER) P.C. Board Ass'y	X-7959 X-7960	GE-23E-7305 GE-23E-7338
(27)	Function SW (24HR, AUTO, POWER) P.C. Board Ass'y	X-7961	GE-23E-7339
(28)	PA/EXT SPKR Jack P.C. Board Ass'y	X-7964	GE-23E-7306
(29)	Phone Jack P.C. Board Ass'y	X-7962	GE-23E-7365
(30)	Mic Jack P.C. Board Ass'y	X-7965	GE-23E-7366
(31)	LED (clock indicator)	L-0984	SL-1462-10C
(32)	Mic Jack	J-1008	D5-704B-00S
(33)	Phone Jack	J-1007	SG-7625-01
(34)	DC 12 V Jack	J-6653	S-10812
(35)	ANT Jack	J-6487	NY-R
(36)	Power Transformer	TA-0702	TK-1283
(37)	Supporter for Modulation Transformer	174-0702	
(38)	Heat Sink		GE-23D-7534
		DT 1964	GE-23B-7100
(39)	Spacer for Clock LED	RT-1864	GE-23D-7335

Ref. No.	Description	RS Part No.	MFR's Part No.
(40)	Supporter for LED Meter	RT-1862	GE-23D-7244
(41)	Spacer for Mode/Function Indicator	RT-1861	GE-23D-7245
(42)	Protection Cloth for Volume Controls		GE-23D-7232
(43)	Protection Cloth for Clock Function SW (FAST, SLOW)		GE-23D-7254
(44)	Lug Terminal Strips	J-4580	2L-4P
(45)	Ground Lug (ANT)	HB-6658	GE-21D-6137
(46)	Stud		GE-23D-7368
(47)	Transistor Socket	J-6654	S2-110B-03
	Screws		
(48)	Flat-Head Self Tapping Screws		3 x 6 mm
(49)	Round-Head Self Tapping Screws		3 x 6 mm
(50)	Round-Head Self Tapping Screws		3 x 8 mm
(51)	Round-Head Self Tapping Screws		4 x 10 mm
(52)	Binding-Head Self Tapping Screws		2.6 x 7 mm
(53)	Pan-Head Screws		3 x 6 mm
(54)	Pan-Head Screws		3 x 8 mm
(55)	Pan-Head Screws		3 x 12 mm
(56)	Pan-Head Screws		4 x 5 mm
(57)	Binding-Head Screws		2.6 x 6 mm
(58)	Binding-Head Screws		3 x 15 mm
(59)	Binding-Head Screws		4 x 8 mm
(60)	Binding-Head Screws		4 x 10 mm
(61)	Hex Nuts		3 0
(62)	Hex Nuts		4 φ
(63)	Speed Nuts		PSN-4
(64)	Internal Star Lock Washers		3 0
(65)	Spring Washers		3 φ
(66)	Spring Washers		4 φ
	Flat Cable (Connect Clock P.C.B. to Clock LED)	W-2263	GE-23D-7317
	Heat Sink (Assembled in Power Supply P.C.B.)	HH-0313	GE-23D-7126
	Post Pin (Assembled in Power Supply P.C.B.)		MX-1. 14T-18
	Stand Off (Assembled in Clock P.C.B.)		$3\phi x 5 mm$
	Stand Off (Assembled in Power Supply P.C.B.)		$3\phi \times 20$ mm
	Stand Off (Assembled in Power Supply P.C.B.)		$4 \phi \times 10 \text{ mm}$
	Wire Clip (Al)		GE-23D-7319
	Wire Binder		220-JD485210-01
	Wire Binder		BK-1
	AC Power Cord		KP-10
	Cord Strain Relief	HB-0705	3P-4
	Fuse		1A, 125 V or 250
	Fuse Caution Label		GE-23D-7641
	Caution Notice Label		GE-19D-4860
	Model Label		GE-23D-7337

APPENDIX TO PARTS LIST

For Canadian model, some parts are changed. Following parts list information applies to this model.

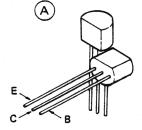
Ref. No.	Description	RS Part No.	MFR's Part No.
	Fuse Fuse Caution Label		1A, 125 V (62ML) GE-23D-7461
	Caution Notice Label (Not used) Model Label		GE-23D-7158

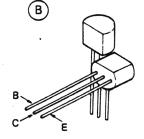
ACCESSORY LIST

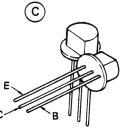
Ref. No.	Description	RS Part No.	MFR's Part No.
	DC Power Cord Ass'y	W-2264	GE-23D-7343
P403	3P Connector	J-6655	W-E1003
	F Terminal		W-T5302
	Fuse Holder		
	Fuse		4A, 125 V
			(UL 61ML)
	Cable		AWM1015
	Fuse Caution Label		GE-23D-7490
	Microphone with Mic Hanger Screws Kit		M049D50G0310 GE-17D-3738

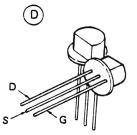
APPENDIX TO ACCESSORY LIST

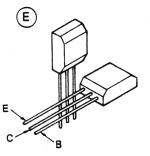
For Canadian model, some accessory are changed. Following accessory list information applies to this model.

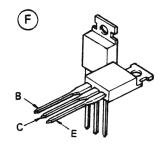

Ref. No.	Description	RS Part No.	MFR's Part No.
	Fuse (Assembled in DC Power Cord)		4A, 125 V
	Fuse Label Fuse Caution Label (Not used)		4A

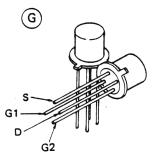

SEMICONDUCTOR LEAD IDENTIFICATION

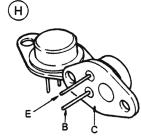

- (1) TRANSISTOR
 - (A) ; 2SA1015(Y), 2SC1923(D), 2SC1815(Y), 2SC1815(GR)
 - (B) ; 2SC2086
 - (C) ; 2SC735(O) or (Y), 2SC732(GR)
 - (D) ; 2SK19(GR)
 - (E) ; 2SC509(O) or (Y)
 - (F) ; 2SD525(O) or (Y), 2SC1173(O), 2SC2393, 2SC2394, 2SD234(O) or (Y)

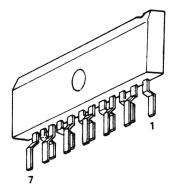

.

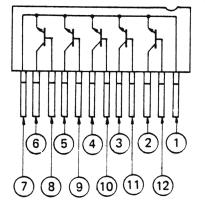

- (G) ; 3SK59(GR)
- (H) ; 2SD428(O)



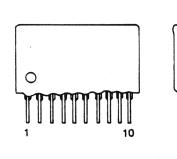


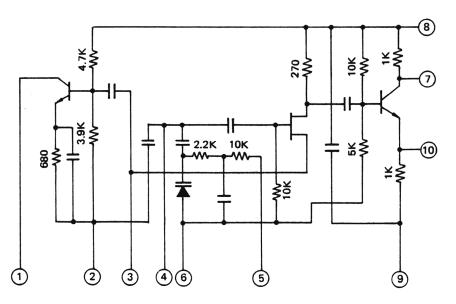


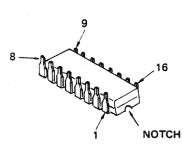


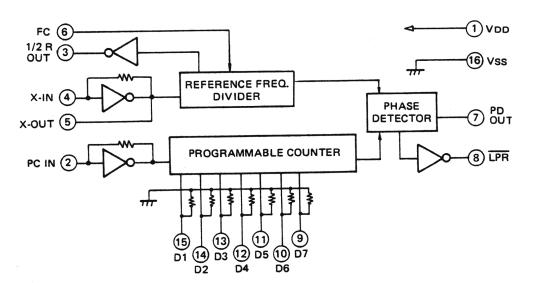


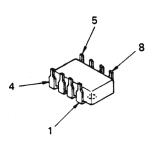
(2) IC/TRANSISTOR ARRAY

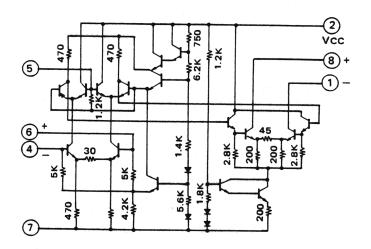

TA58/TA78

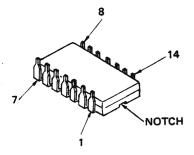


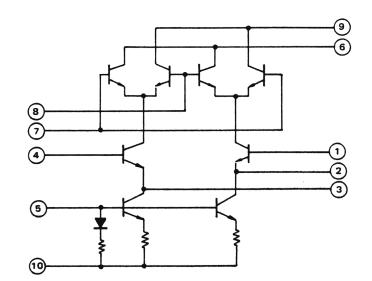

IC LEAD IDENTIFICATION AND EQUIVALENT CIRCUIT

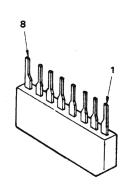

1. KH3207

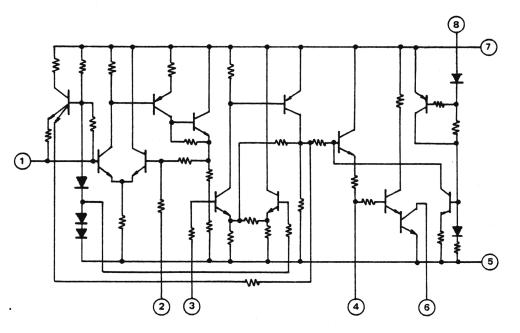


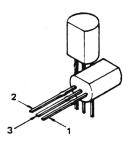

2. LC7113

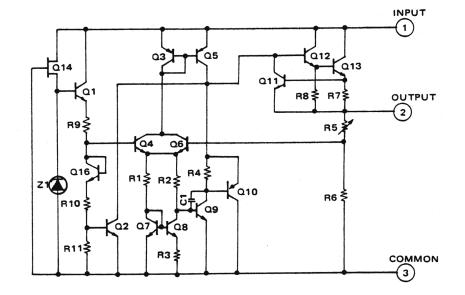


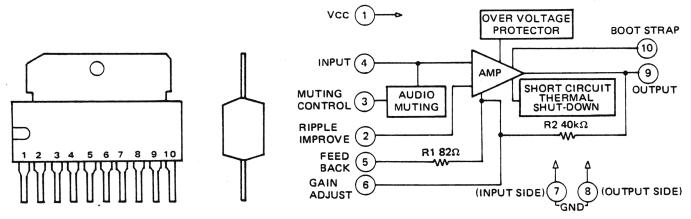

3. SN76600P



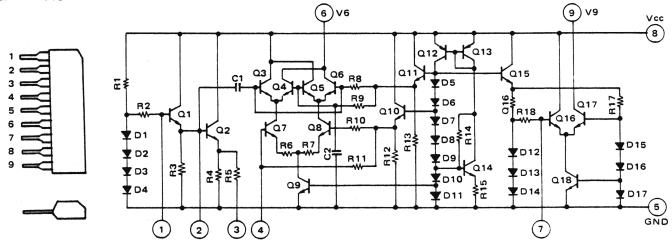

4. MC1496P

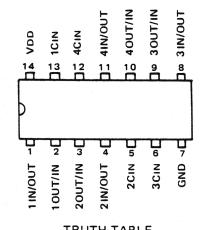


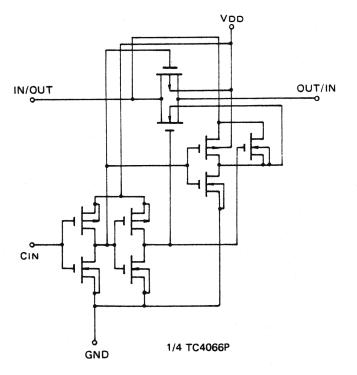

5. μPC1170H

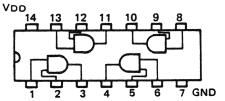


6. TA78L009P

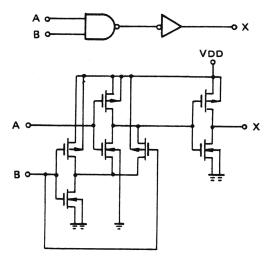



7. TA7222P

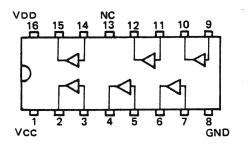

8. TA7310P

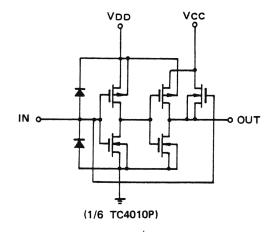

9. TC4066P

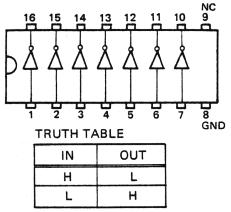
IRUTHI	ABLE
IN	OUT
VDD ~ GND	VIN
Vdd~Gnd	High Impedance
	IN Vdd ~ Gnd

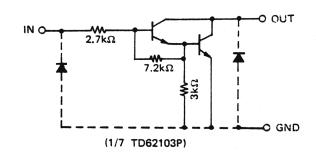

QUAD 2-INPUT POSITIVE AND GATE

TRUTH TABLE


the second s		
INF	TUY	OUTPUT
A	В	Х
L	L	L
L	н	L
Н	L	L
н	н	Н




11. TC4010P


HEX BUFFER/CONVERTER (NON INVERTING TYPE)

12. TD62103P

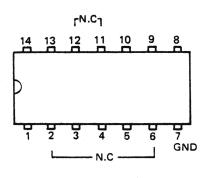
13. TMS1023NL (MPU)

Pin I	No.	Pin N	lo.
1	R8	15	02
2	R9	16	01
3	R10	17	00
4	VDD	18-	- OSC
5	K1	19 -	030
6	К2	20	Vss
7	K4	21	RO
8	K8	22	R1
9	INT	23	R2
10	07	24	R3
11	06	25	R4
12	05	26	R5
13	04	27	R6
14	03	28	R7

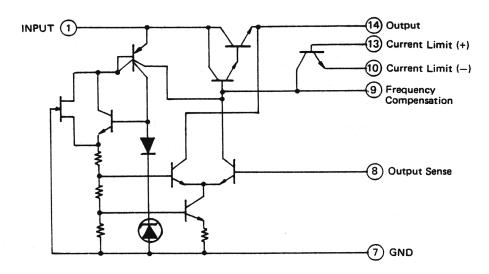
NOTE: Refer to the Schematic Diagram of Microprocessor for the Logic Terms.

4	
	TOP VIEW

Pin	No.	Pin
1	AM OUTPUT	. 22
2	10 HRS b & c segments	23
3	HRS f segment	24
4	HRS g segment	25
5	HRS a segment	26
6	HRS b segment	27
7	HRS d segment	28
8	HRS c segment	29
9	HRS e segment	30
10	10 MINS f segment	31
11	10 MINS g segment	32
12	10 MINS a & d segments	33
13	10 MINS b segment	34
14	10 MINS e segment	35
15	10 MINS c segment	36
16	MINS f segment	
17	MINS g segment	37
18	MINS a segment	
19	MINS b segment	38
20	MINS e segment	39
21	MINS d segment	40


14. LM8360

Pin No.


MINS c segment OUTPUT COMMON SOURCE Not used (floating) ALARM OUTPUT ALARM OFF INPUT Not used (floating) Vss VDD Not used (floating) ALARM DISPLAY INPUT SECONDS DISPLAY INPUT SLOW SET INPUT FAST SET INPUT 50/60 Hz INPUT 50/60 Hz SELECT (floating) 60 Hz is selected. **BLANKING INPUT** (connected to VSS) 12/24 HRS SELECT 1 Hz OUTPUT

PM OUTPUT

15. TA7089P

NC : Pin 2 - 6, 11, 12

SEMICONDUCTOR VOLTAGE READINGS

.

			RECEIVING		-	TRANSMITTING	
REF. N	10.	POWER SUPPL	Y 13.8 V DC (V DC)		POWER SUPPL		
		AM	LSB	USB	AM	LSB	USB
Q1	B	0.68	0.68	0.68	0	0	0
	C	0	0	0	2.4	2.4	2.4
	E	0	0	0	0	0	0
Q2	B	0	0	0	0.68	0.68	0.68
	C	3.4	3.4	3.4	0	0	0
Q3	E	0	0	0	0	0	0
	B	0.75	0	0	0.75	0	0
	C	0	3.7	6	0	3.7	6
	E	0	0	0	0	0	0
Q4	B	0	0.75	0	0	0.75	0
	C	4.7	0	6	4.7	0	6
	E	0	0	0	0	0	0
Q5	B	0	0.7	0	0.5	0.7	0
	C	8	0	0	0.78	0	0
	E	0	0	0	0	0	0
Q6	B	0	0	0.7	0.1	0	0.7
	C	0	7.8	0	0	7.8	0
	E	0	0	0	0	0	0
Q7	B	0.6	0.6	0.6	0.6	0.6	0.6
	C	2.4	2.4	2.4	2.4	2.4	2.4
	E	0	0	0	0	0	0
Q8	B	0	0	0	0.7	0	0
	C	0	0	0	0	0	0
	E	0	0	0	0	0	0
Q9	B	0	0	0	0	0	0
	C	0	0	0	1.5	1.5	1.5
	E	0	0	0	0	0	0
Q10	B	0	0	0	0	0	0
	C	0	0	0	8	8	8
	E	0	0	0	0	0	0
Q11	B	0	0	0	8	8	8
	C	0	0	0	8.6	8.6	8.6
	E	0	0	0	7.2	7.2	7.2
Q12	B	0	0	0	1.2	1.2	1.2
	C	0	0	0	8.4	8.4	8.4
	E	0	0	0	0.54	0.5	0.5
Q13	B	0	0	0	0.58	0.64	0.64
	C	13.8	13.8	13.8	6	13.8	13.8
	E	0	0	0	0	0	0
Q14	B	0	0	0	0.58	0.64	0.64
	C	13.8	13.8	13.8	6	13.8	13.8
	E	0	0	0	0	0	0

					REC	CEIVIN	G				TRANSMITTING				
REF. N	0.		POWER SUP	۲LY	13.8	V DC	-			POWER SUPPLY 13.8 V DC NO MODULATION					
		1	and the state page and the state		(V	DC)				· · · · · · · · · · · · · · · · · · ·	(VDC)	· · · · · · · · · · · · · · · · · · ·			
			AM		L	.SB		l	JSB	AM	LSB	USB			
Q15	B C E	RF MAX	0 z 0.74 0 ¥ 0 0 ¥ 0	RF MAX	0 0 0	RF MIN 0 0	74	RF MAX 0 0	z 0.74 v 0 u 0	0 0 0	0 0 0	0 0 0			
Q16	B C E	RF IN: OV	0> 0.55 0 ZEO 0 E 0	RF IN: OV	0 0 0	RF IN: 50m <: 0	55	RF IN: 0 0 0 0 0	> 0.55 ^{N E} ^{S C} ^{S C} ^{S C} ^{S C}	0.78 0 0	0.78 0 0	0.78 0 0			
Q17	B C E	RF IN: OV	0.62> 0.62 0.1 Z 0.55 0 Z 0.55		0.62 0.1 0	2> 0.6 2 0 2 2 0 2 0 2			2> 0.62 ^{NEO} 0.55 ^{LEO} 0	0.2 0.79 0	0.2 0.79 0	0.2 0.79 0			
Q18	B C E	RF IN: OV	1.3> 1.02 5.2 ZE 5.2 0.6 2 0.46	_		> 1.(^{NE} 5.2 ^{NE} 0.4	2	≥ 1.3 볼 5.2 뿐 0.6	> 1.02 Z 6 5.2 L 0.46	0 0 0	0 0 0	0 0 0			
Q19	B C E	RF IN: OV	5.8> 5.8 8 ²⁶ 8 5.2 ²⁶ 5.2	RF IN: OV	5.8 8 5.2	> 5.8 20 ^m < 5.7	3	중 5.8 길 8 발 5.2	> 5.8 ^{N E 0} ² ² ² ² ² ² ² ² ² ²	0 0 0	0 0 0	0 0 0			
Q20	G1 G2 S D		0 0.58 0 7.6			0 0.58 0 7.6			0 0.58 0 7.6	0 0 0 0	0 0 0 0	0 0 0 0			
Q21	B C E	RF IN: OV	0.76> 0.62 8.4 [∠] 8.4 0.18 [⊥] 0.1	RF IN: OV	0.76 8.4 0.18	2.0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.	52 4 1	≥ 0.76 ≝ 8.4 ₩ 0.18	5> 0.62 ZE 8.4 3 2 0.1	0.76 8.4 0.12	0.76 8.4 0.12	0.76 8.4 0.12			
Q22	B C E		0.66 2.0 0			0.66 2.0 0			0.66 2.0 0	0 0 0	0 0 0	0 0 0			
Q23	B C E		2.0 6.0 1.25			2.0 6.0 1.25			2.0 6.0 1.25	0 0 0	0 0 0	0 0 0			
Q24	B C E		2.2 8.6 1.5			2.2 8.6 1.5			2.2 8.6 1.5	0 0 2.6	0 0 2.6	0 0 2.6			
Q25	B C E		2.1 3.0 0.3			2.1 3.0 0.3			2.1 3.0 0.3	0 0 0	0 0 0	0 0 0			
Q26	B C E		0 0 0			0 0 0			0 0 0	0.72 0 0	0.72 0 0	0.72 0 0			
Q27	B C E		0 0 0			0 0 0			0 0 0	0 0 0	0 0 0	0 0 0			
Q28	B C E		0 0 0			0 0 0			0 0 0	0.72 0.1 0	0 7.4 0	0 7.4 0			

							REC	EIV	ING									TRA	NSMI"	TTING	ì		
			POV	VER	SUPP	LY	13.8	B V C	C								SUPP		3.8 V	DC			
REF. N	NO.						(\	/ DC	;)					NO MODULATION (V DC)									
				AM				LSB				USB		AM				LSB			3		
	В			3.6				3.6				3.6				3.6			3.6			3.6	
Q29	C E			5.1 3.4				5.1 3.4				5.1 3.4				5.1 3.4			5.1 3.4			5.1 3.4	
	<u>В</u>			<u> </u>		-		0.72)			0.72				0						0	
030	č			0				0.72	-			0.72	-			0			0			0	
	Е			0				0				0				0			0			0	
	G	3	0	> Z F	-0.75 1.35 8.7	S	0	> Z F	-0.75	3	0	>	-0.75 1.35 8.7			0			0			0	
Q31	S D	RF IN: OV	2.4 8.7	RF IN: 50mV	1.35	R IN	2.4 8.7	RF IN: 50mV	1.35 8.7	RF IN: OV	2.4	1501	1.35			0			0			0	
	В	-		0		-		0		-		0		-		0			0			0	
Q32	С			0				0				0				0			0			0	
	E			0				0				0				0			0			0	
033	BC		0	NON	0.72	_	0	NON	0.72	_	0	NON	0.72		0	NON	0.72	0	NON	0.72	0	NON	0.72
235	E	CB	0 0	PA/MON	0	CB	0 0	PA/MON	0	CB	0	PA/MON	0 0	CB	0 0	PA/MON	0	0 8 0	PA/MON	0	0 3 0	PA/MON	0 0
	В			0		1		0.6				0.6		†		0			0.6			0.6	
Q34	C			0				4.4				4.4				0			4.4			4.4	
	E B			0				0.1			- a a y a a tag	0.1				0	in the second design		0.1			0.1	
Q35	c			0				6.6				6.6				0			6.6			6.6	
	Е	ļ		0				3.8			-	3.8				0			3.8			3.8	
Q36	В			0				0				0				0.63 4.5	3		0			0	
230	C E			0 0				0 0				0 0				4.5 0			0			0	
	В		0	NO	8.6		0	NO	8.6		0	NO	8.6		0	Z	8.6	0	NO	8.6	0	Z	8.6
Q37	CE	CB	0 0 0.6	A/M	0	CB	0 0 0.6	A/M	0	CB	0 0 0.6	A/M	0	CB	0	NOW/Va	0	8 O	NOM/A9	0	0 8	NOM/A9	0
	B			<u>م</u> 0	0.6	÷		0	0.6		0.6	0	0.6		0.0	8.6	8.6	0.	04 <u>⊾</u> 8.6	8.6	0.	64 a 8.6	8.6
Q38	C			0				0				0				0.0			0			0.0	
	E			0.6				0.6				0.6		L		0.64	L		0.64	1		0.6	4
0.00	В			0.72	2			0.72	2			0.72	2			0.72	2		0.72	2		0.7	
Q39	C E			5.2 0.2				5.2 0.2				5.2 0.2				5.2 0.2			5.2 0.2			5.2 0.2	
	В			5.3				5.3				5.3				5.3			5.3		<u>†</u>	5.3	
Q40	С			7.4				7.4	•			7.4				7.6			7.4			7.4	
	E			4.6		-		4.6				4.6				4.6			4.6			4.6	
Q41	B C			7.4 3.8				7.4 3.8			1	7.4 3.8				7.6 13.8			7.4 13.8			7.4 13.8	
	E			6.8				6.8				6.8				7.0			6.8			6.8	
	В			6.8				6.8				6.8				7.0			6.8			6.8	
Q42	C E			3.8 6.3				3.8 6.3			1	3.8 6.3				13.8 6.3			13.8 6.3			13.8 6.3	
				0.0				0.5				0.5				0.5			0.5			0.3	

			RECEIVING		-	TRANSMITTING	3				
		POWER SUP	PLY 13.8 V DC		POWER SUPPLY 13.8 V DC						
REF. N	0.		(V DC)		NO MODULATION (V DC)						
		AM	LSB	USB	AM	LSB	USB				
	в	0	0	0	0	0	0				
Q43	C E	0	0	0	0	0	0				
	В	0.34	0.34	0.34	0	0	0				
Q44	C	0	0	0	0	0	0				
-	E	0	0	0	0	0	0				
0.15	В	0.7	0.7	0.7	0 z 0.7	0 Z 0.7					
Q45	C E	0	0	0	0 Z 0.7 0.8 X 0 0 Z 0	0 Z 0.7 8 0 V 0 0 4 0	0 N 0 0 A/M 0 0 N 0				
	В	0	0	0							
Q46	С	13.8	13.8	13.8	0 0.2 ξ 13.8	0 Z 0 13.8 ¥ 13.8 0 ¥ 0	0 Z 0 13.8 × 13.8 0 ¥ 0				
	E	0	0	0		and the second	el compression de la				
Q47	B C	6 0	6 0	6 0	6 0	6 0	6 0				
	E	6	6	6	6	6	6				
	В	9.3	9.3	9.3	9.3	9.3	9.3				
Q301	C E	13.8 8.6	13.8 8.6	13.8 8.6	13.8 8.6	13.8 8.6	13.8 8.6				
	В	9.9	9.9	9.9	9.9	9.9	9.9				
Q302	С	13.8	13.8	13.8	13.8	13.8	13.8				
	E	9.3	9.3	9.3	9.3	9.3	9.3				
Q303	B C	0.69 ₂ 0.69 30.2 <u>80</u> 13.8 0 0 0 0	کھ 0.69 م 13.8 m 2 0 0 0 V	0.69 0 0.2 0.2 13.8 0 0 0 0	$\begin{cases} 0.69 > 0 \\ 0.2 :: 0$	$ \begin{array}{cccc} & 0.69 & & 0 \\ & & 0.2 & & & \\ & & 0.2 & & & \\ & & 0 & & 0 \\ & & 0 & & 0 \end{array} $	$ \begin{array}{cccc} & 0.69 & > & 0 \\ 0.69 & > & 0 \\ 0.2 & :: & 0.2 & :: & 13.8 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} $				
	Ē					0 10 90 90 V					
	в	변 13.8 <u>공</u> 5.2	법 13.8 중 5.2	[⊥] 13.8 z 5.2 ⁰ 13.8 <u>Σ</u> 13.8	μ 13.8 z 5.2	# 13.8 z 5.2	^μ 13.8 z 5.2 ⁰ 13.8 <u>x</u> 13.8				
Q304	C E	щ 13.8 г 5.2 ом 13.8 № 13.8 ом 13.1 о 4.6	13.8 z 5.2 13.8 y 13.8 13.1 0 4.6	0 13.8 ⊻ 13.8 ⊻ 13.1 0 4.6	13.8 z 5.2 13.8 z 13.8 13.1 a 4.6	μ 13.8 z 5.2 0 13.8 ± 13.8 Δ 13.1 Δ 4.6	13.8 z 5.2 13.8 v 13.8 13.1 0 4.6				
						And the second sec					
Q401	B C	0 14.2 0 0 13: 22 150 0 10 13: 14.2 0	0 5 14.2 0 0 30 15 0 0 15 0	0 14.2 V 0 13.3 V 13.3 V 13.3 V 13.3 V 13.3 V 14.2 V 13.3 V 13.3 V 14.2 V 14.2 V 14.2 V 19.5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 14.2 ≥ 0 22 ::22 ::0 15 0	3 14.2 0 22 30 13 0 15 0 0				
	E	¥ 15 ^A 0	22 ::: 13 ¹ 22 :: 15 0 0	¥ 15 ⁶ 0	¥ 15 ^ŏ 0	¥ 15 ° 0	¥ 15 ⁶ 0				
0501	В	0	0	0	7.8	7.8	7.8				
Q501	CE	0	0	0	8.5 8.5	8.5 8.5	8.5 8.5				
	В	0.7	0.7	0.7	0.72	0.72	0.72				
Q502	С	0	0	0	0	0	0				
	E	0	0	0	0	0	0				
Q503	B C	0 8.6	0 8.6	8.2 8.6	0 8.6	0 8.6	8.2 8.6				
	Ē	0	0	7.5	0	0	7.5				
	В	0.74	0.74	0	0.74	0.74	0				
Q504	C	0	0	8.2	0	0	8.2				
	E	0	0	0	0	0	0				

					<u></u>	F	REC	EIVI	NG									TR	ANS	міт	TING	ì			
REF. N	0.		POW	ER	SUPP	LY	13.8		C								SUPP			VC	C				
							(V	DC)									· .	(V	DC)				
			1	MA			L	SB		USB				AM			LSB						USB		
	В			0				8.4				0				0				8.4				0	
Q505	C			3.6				8.6				8.6				8.6				8.6				8.6	
	E)				7.7				0	•			0				7.7		-		0	
Q506	B C			3.4 3.6				0 8.6				0 8.6				8.4 8.6				0 8.6				0 8.6	
2500	E			7.7				0.0				0.0				7.7				0				0.0	
Q507	B C	sa on	0.64 0	ŏ	0 0.72	sa on	-	3 OFF	0 0.72	SQ ON	0.0 0	34 OS	0 0.72	SQ ON	0.5 0	SQ OFF	0.58 0	sa on	0.50 0		0.58 0	SQ ON	0	SO OFF	0.58 0
	E		0		0		0		0		0		0				0	1	0		0		0		0
Q508	B C E	NO MEM- OR Y OP.	0 7.1 0	WO	0.7 0 0	NO MEM	0 7.1 0	MEMORY OP.	0.7 0 0	NO MEM- ORY OP.	0 7. 0	MEMORY OP.	0.7 0 0	NO MEM	0 7.1 0	MEMORY OP.	0.7 0 0	NO MEM	0 7.1 0	MEMORY OP.	0.7 0 0	NO MEM- ORY OP.	0 7.1 0	MEMORY OP.	0.7 0 0
	В			3.4				8.4				8.4				8.4		20		8.4				8.4	
Q509	С			9.1				9.1				9.1				9.1				9.1				9.1	
	E			9.1				9.1				9.1				9.1			(9.1				9.1	
0510	B			7.0				7.0				7.0				7.0				7.0				7.0	
Q510	C))				0 0				0 0				0				0 0				0	
	В	œ			5.2	œ			5.2	œ	12		5.2	œ	12		5.2	œ			5.2	œ	12		52
Q607	C E	DIMMER	12.9 12.0		5.2 12.5 4.6	DIMME	12. 12.	5 WW 0	12.5 4.6	DIMME	12 12	.5 WW 10	5.2 12.5 5 4.6	DIMME	12 5 12	5 WWIQ	12.5 5 4.6	DIMME	12.		12.5 5 4.6	DIMME	12 12	.5 WW	5.2 12.5 5 4.6
	1			6				6		ľ		6				6			(6				6	
	2			2.3				2.3				2.3				2.3			:	2.3				2.3	
	3 4							_				_								_				_	
	5			2.8				2.8				2.8				2.8				2.8				2.8	
	6			6				6				6				6				6				6	
	7			2.1				2.1				2.1		-		2.1				2.1				2.1	
IC1	8			6 n				6				6				6				6				6	
DATA	9 - 10 11 12 13 14 - 15		6	or O			6	0 or 0			(0 6 or 0)		6	0 or 0			6	0 or 0			6	0 i or 0	
	16		(0	·			0				0				0	-			0				0	

			RECEIVING		٢	RANSMITTING	
		POWER SUPPL	Y 13.8 V DC		POWER SUPPL		
REF.	NO.				NO MODULAT		
			(V DC)			(V DC)	
		AM	LSB	USB	AM	LSB	USB
	1	5.3	5.3	5.3	5.3	5.3	5.3
	2	0	0	0	0	0	0
	3	0	0	0	0	0	0
	4	0	0	0	0	0	0
1C2	5	2.1	2.1	2.1	2.1	2.1	2.1
102	6	0	0	0	0	0	0
	7	4.8	4.8	4.8	4.8	4.8	4.8
	8	6	6	6	6	6	6
	9	0	0	0	0	0	0
	10	1.7	1.7	1.7	1.7	1.7	1.7
	1	1.25	1.25	1.25	1.25	1.25	1.25
	2	6	6	6	6	6	6
	3	2	2	2	2	2	2
	4	3.3	3.3	3.3	3.3	3.3	3.3
1C3	5	0	0	0	0	0	0
	6	2.5	2.5	2.5	2.5	2.5	2.5
	7	2.4	2.4	2.4	2.4	2.4	2.4
	8	2.3	2.3	2.3	2.3	2.3	2.3
	9	2.4	2.4	2.4	2.4	2.4	2.4
	1	0	0	0	7.2	7.2	7.2
	2	0	0	0	7.2	7.2	7.2
	3	0	0	0	2.1	2.1	2.1
	4	0	0	0	7.2	7.2	7.2
IC4	5	0	0	0	0	0	0
	6	0	0	0	2.6	2.6	2.6
	7	0	0	0	1.5	1.5	1.5
	8	0	0	0	2.3	2.3 2.6	2.3 2.6
	9	0	0		2.6		
	1.	13.8	13.8	13.8	13.8	13.8	13.8
IC5	2	9	9	9	9	9	9
	3	0	0	0	0	0	0
	1	8.1	8.1	8.1	8.1	8.1	8.1
	2	8.1	8.1	8.1	8.1	8.1	8.1
	3	0	0	0	0	0	0
IC6	4	2.4	2.4	2.4	2.4	2.4	2.4
	5	2.4	2.4	2.4	2.4	2.4	2.4
	6	2.4	2.4	2.4	2.4	2.4	2.4
	7	0	0	0	0	0	0
	8	8.1	8.1	8.1	8.1	8.1	8.1

					RECE	IVING	•			TRANSMITTING	
REF. I	NO.		POWE	R SUPP	LY 13.8	V DC			POWER SUPP		
					(V	DC)				(V DC)	
			A	M	L	SB	U	SB	AM	LSB	USB
	1		0	0	0	0	0	0	0	0	0
	2		5	5	5	5	5	5	0	0	0
	3	· .	0.7	0.6	0.7	0.6	0.7	0.6	0	0	0
	4		0	0	0	0	0	0	0	0	0
	5	NO	0	<u>۲</u> 0	NO O	0 C	z 0	<u>ٿ</u>	0	0	0
107	6	0	0	: 0FF	U		N 0 0.0	. OFF	0	0	0
IC7	7	Z N	0	0 0 0.65	0 0 0 0.65	0 0 0.65	NV 0 NV/8N 0.65	0 0 0/9N 0.65	0	0	0
	8	NB/ANL	0	N O	V V	٩ ٥	₹ 0	₹ 0	0	0	0
	9	Z	0.65	₽ 0.65	z 0.65	[∞] 2 0.65	z 0.65	2 0.65	0	0	0
	10		0.7	0.6	0.7	0.6	0.7	0.6	0 /	0	0
	11		0.4	0.4	0.4	0.4	0.4	0.4	0	0	0
	12		0.56	0.56	0.56	0.56	0.56	0.56	0	- 0	0
	1		0		0		0		1.7	2.1	2.1
	2	1	0		0		0		0	1.4	1.4
	3		0		0		0		1.0	1.4	1.4
	4		0		0		0		1.7	2.05	2.05
	5		0		0		0		1.2	1.4	1.4
	6		0		0		0		2.1	7.7	7.7
1C8	7		0		0		0		0	0	0
100	8		0		0		0		1.75	6.3	6.3
	9		0		0		0		0	0	0
	10		0		0		0		1.7	6.3	6.3
	11		0		0		0		0	0	0
	12		0		0		0		0.9	7.7	7.7
	13		0		0		0		0	0	0
	14		0		0		0		0	0	0
	1		0	0	0	0	.0	0	0	0	0
	2		0	0	0	0	0	0	0	0	0
	3		0	8.6	0	8.6	0	8.6	0	0	0
	4		0	8.6	0	8.6	0	8.6	0	0	0
	5	NO	5.6	<u> </u>	z 5.6 0 0	<u> </u>	5.6	u 0 0.7	0	0	0
IC9	6	00	0	U 0.7 0.7 0	0 0	u u u u u u u u u u u u u u u u u u u	NO 0 0 0 0		0	0	0
	7	so	0	0 S	0 N		8 O	0 SO	0	0	0
	8		0.65	0	0.65	0	0.65	0	0	0	0
	9		0	0.7	0	0.7	0	0.7	0	0	0
	10		0.67	0	0.67	0	0.67	0	0	0	0
	11		0	0	0	0	0	0	0	0	0
	12	1	0	0	0	0	0	0	0	0	0

			RECEIVING	•	TRANSMITTING		
REF. I	NO.	POWER SUPPLY 13.8 V DC			POWER SUPPLY 13.8 V DC NO MODULATION		
		(V DC)			(VDC)		
		AM	LSB	USB	AM	LSB	USB
	1	1.8	1.8	1.8	1.8	1.8	1.8
	2	2.0	2.0	2.0	2.0	2.0	2.0
	3	1.35	1.35	1.35	1.35	1.35	1.35
IC10	4	0	0	0	0	0	0
1010	5	0	0	0	0	0	0
	6	0	0	0	0	0	0
	7	8.6	8.6	8.6	8.6	8.6	8.6
	8	8.6	8.6	8.6	8.6	8.6	8.6
	1	13.8	13.8	13.8	13.8	13.8	13.8
	2	3	3	3	3	3	3
	3	. –	_	-			_
	4		-	-	_	-	— ¹
IC12	5	1.9	1.9	1.9	1.9	1.9	1.9
1012	6	1.9	1.9	1.9	1.9	1.9	1.9
	7	0	0	0	0	0	0
	8	0	0	0	0	0	0
	9	7.0	7.0	7.0	7.0	7.0	7.0
	10	13.8	13.8	13.8	13.8	13.8	13.8
	1	22	22	22	22	22	22
	2		, -	-	-	- · · ·	
	3		-	-			
	4	- · ·	 , , , , , , , , , , , , , , , , , ,	_		-	
	5	- n - n	· · ·	-	-		
	6		-	_	-	-	· · · · ·
IC301	7	0	0	0	0	0	0
,0001	8	3.1	3.1	3.1	3.1	3.1	3.1
	9	16	16	16	16	16	16
	10	13.8	13.8	13.8	13.8	13.8	13.8
	11		- · · ·	-	-		-
	12	-	-	_			_
	13	13.8	13.8	13.8	13.8	13.8	13.8
	14	14.8	14.8	14.8	14.8	14.8	14.8

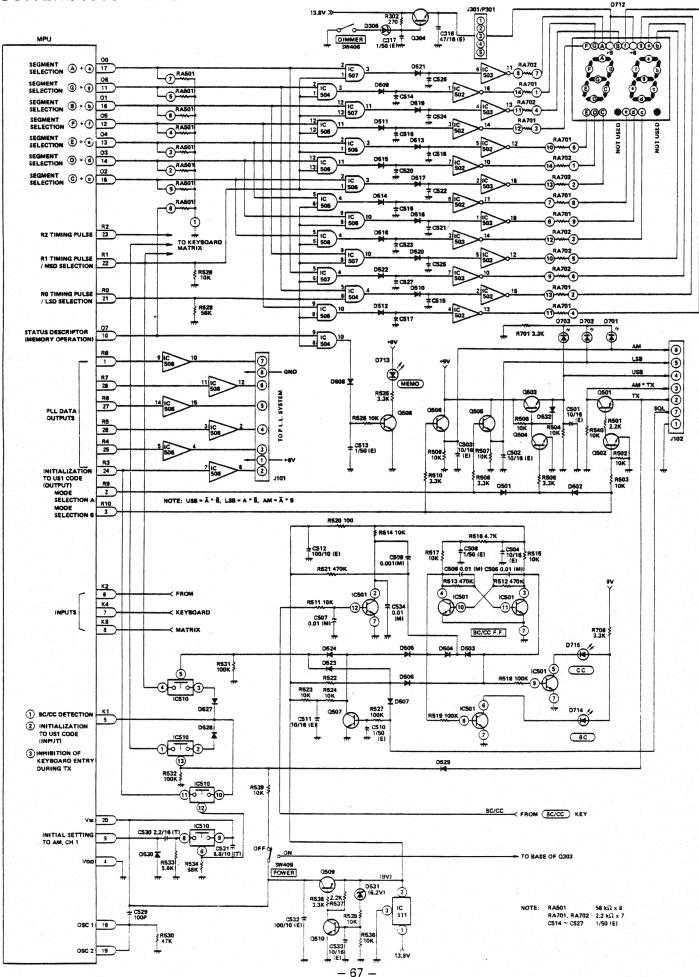
Ref. No.	ICS	501	IC502	IC503	IC504*	IC505*	IC506*	IC507*	IC508
Pin No.	BC Set (V DC)	CC Set (V DC)			Cha	annel 38 sele (VDC)	cted		
1	0	0	3.1	3.2	0.8	0	0.9	0.9	0
2	9	9	3.1	3.2	2.6	2.6	2.6	2.6	0
3	8.1	0	0	3.2	0	0	0	0	0
4	0	7.7	3.1	3.2	0	0	0	0	6.0
5	0	0	0	3.2	2.6	2.6	2.6	2.6	9.0
6	0	0	3.1	3.2	0.9	0.9	0.9	0.9	0
7	0	0	3.1	3.2	0	0	0	0	0
8	0	0.6	0	0	0.9	0.9	0.9	0.9	0
9	0.6	0	0	0	0	2.6	4	2.6	9.0
10	0.6	0.6	0.7	0.7	0	0	0	0	6.0
11	0	0	0.7	0.7	0	0	0	0	0
12	0	0	11.2	0.7	0	2.6	4.1	2.6	0
13			0.7	0.7	0.9	0.9	0.9	0.9	0
14			11.2	0.7	9.1	9.1	9.1	9.1	9.0
15			0.7	0.7		L			6.0
16			0.7	0.7					8.5

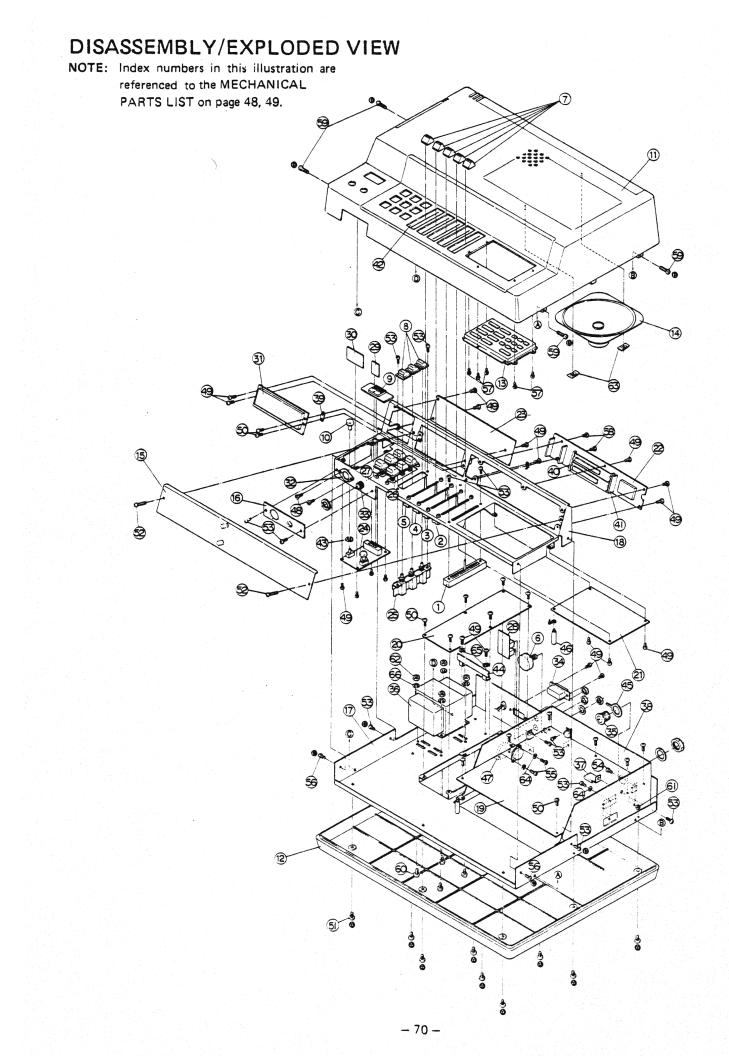
			RECEIVING	•		TRANSMITTING		
Ref. N	lo. [Channel 38 selected, No buttons are pressed						
		AM	LSB	USB	AM	LSB	USB	
	1	9.0	9.0	9.0	9.0	9.0	9.0	
	2	0	8.7	0	0	8.7	0	
	3	8.5	0	0	8.5	0	0	
	4	0	0	0	0	0	0	
	5	0.8	0.8	0.8	1.7	1.7	1.7	
	6	0	0	0	0	0	0	
	7	0	0	0	0	0	0	
	8	0	0	0	0	0	0	
	9	0	0	0	0	0	0	
	10	0	0	0	0	0	0	
	11	4.1	2.8	2.8	4.1	2.8	2.8	
	12	2.9	2.9	2.9	2.9	2.9	2.9	
	13	2.9	2.9	2.9	2.9	2.9	2.9	
IC509	14	2.9	4.1	4.1	2.9	4.1	4.1	
10208	15	4.1	2.8	4.1	4.1	4.1	4.1	
	16	4.1	2.8 ·	4.1	4.1	4.1	4.1	
	17	4.1	2.8	2.8	4.1	2.8	4.1	
	18	6.0	6.0	6.0	6.0	6.0	6.0	
	19	6.0	6.0	6.0	6.0	6.0	6.0	
	20	9.1	9.1	9.1	9.1	9.1	9.1	
	21*	0.9	0.9	0.9	0.9	0.9	0.9	
	22*	0.9	0.9	0.9	0.9	0.9	0.9	
	23 *	1.0	1.0	1.0	1.0	1.0	1.0	
	24	0	0	0	0	0	0	
	25	9.0	9.0	9.0	9.0	9.0	9.0	
	26	0	0	0	0	0	0	
	27	9.0	9.0	9.0	9.0	9.0	9.0	
	28	0	0	0	0	0	0	

* Voltage readings may differ due to MPU clock timing.

Ref. No.	POWER: ON, RX, No buttons are pressed (VDC)			
1	0.9			
2	0			
3	0			
4	0.9			
5	0			
6	0			
7	0			
IC510 8	0			
9	9.0			
10	0			
11	0			
12	0			
13	0			
14	9.0			
1	13.8			
IC511 2	9.1			
3	0			

Ref. I	No.	24HR : OFF Clock Display; AM 10 : 56 (V DC)	24HR : ON Clock Display; 23 : 01 (V DC)
Q601	B	2.3	0
	C	1.9	1.9
	E	1.7	0
Q602	B	2.3	0
	C	1.7	1.7
	E	1.7	0
Q603	B	0	2.5
	C	1.7	1.9
	E	0	1.9
Q604	B	0	2.3
	C	1.9	1.7
	E	0	1.7
Q605	B	0	2.5
	C	0~5	1.9
	E	0	1.9


Ref. No.		24HR : ON (V DC)	24HR:OFF (V DC)	
	В	6.5	0	
Q606	С	5.7	6.1	
	Е	5.7	0	


	24HR : OFF	24HR : ON	
Ref. No.	Clock Display;	Clock Display;	
nei. 140.	AM 10 : 56	23:01	
	(VDC)	(V DC)	
1	2.0	1.7	
2	2.4	0	
3	1.9	0	
4	0	1.9	
5	1.9	1.9	
6	1.9	1.9	
7	1.9	1.9	
8	1.9	1.9	
9			
	1.9	0	
10	1.9	1.9	
11	1.9	0	
12	1.9	1.9	
13	0	1.9	
14	0	1.9	
15	1.9	1.9	
16	1.9	0	
17	1.9	0	
18	1.9	0	
19	0	1.9	
IC601 20	1.9	0	
21	1.9	0	
22	1.9	1.9	
23	6.0 (3.5)	6.0 (3.5)	
24	0	0	
25	0	0	
26	12.0	12.0	
27	0	0	
28	12.0	12.0	
29	0	0	
30	0	0	
31	0	0	
32	0	0	
33	0	0	
34	0	0	
34	5 V AC	5 V AC	
35			
	0	0	
37	12.0	12.0	
38	0	11.2	
39	0~5	1.9	
40	1.7	2.0	

Clock switch in "RUN" position.

AUTO button in "OUT" position. (): DIMMER button in "ON" position.

SCHEMATIC DIAGRAM OF MICROPROCESSOR SECTION

RADIO SHACK A DIVISION OF TANDY CORPORATION U.S.A.: FORT WORTH, TEXAS 76102 CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U. K. 280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD RYDALMERE, N.S.W. 2116 5140 NANINNE WEDNESBURY, WEST MIDLANDS WS10 7JN

3A9B2100

Printed in Japan