

Someone who wanted to help you repair your equipment scanned this manual.

If you would like to help us put more manuals online support us.

Supporters of CBTricks.com paid for the hosting so you would have this file.

CBTricks.com is a non-commercial personal website was created to help promote the exchange of service, modification, technically oriented information, and historical information aimed at the Citizens Band, GMRS (CB "A" Band), MURS, Amateur Radios and RF Amps.

CBTricks.com is not sponsored by or connected to any Retailer, Radio, Antenna Manufacturer or Amp Manufacturer, or affiliated with any site links shown in the links database. The use of product or company names on my web site is not endorsement of that product or company.

If your company would like to provide technical information to be featured on this site I will put up on the site as long as I can do it in a non-commercial way.

The site is supported with donation from users, friends and selling of the Galaxy Service Manual CD to cover some of the costs of having this website on the Internet instead of relying on banner ads, pop-up ads, commercial links, etc. to pay my costs. Thus I do not accept advertising banners or pop-up/pop-under advertising or other marketing/sales links or gimmicks on my website.

ALL the money from donations is used for CBTricks.com I didn't do all the work to make money (I have a day job). I all didn't do all this work for someone else to make money also, for example the ebay CD sellers.

All Trademarks, Logos, and Brand Names are the property of their respective owners. This information is not provided by, or affiliated in any way with any radio or antenna Manufacturers. Thank you for any support you can give.

SERVICE INSTRUCTIONS

for

MODEL 673-PR

23 Channel CB Radio

tin USA Copyright © 1974 by Hy-Gain de Puerto Rico All rights reserved.

Printed April 20, 1974

TABLE OF CONTENTS

SECTION I: GENERAL INFORMATION

General Descr	iption1
	1

SECTION II: OPERATING INFORMATION

Front Panel3
Installation3
Rear Panel4

SECTION III: CIRCUIT DESCRIPTION

Scope	5
Transmission	5
Reception	6
Audio Circuit	.7
Range Boost Circuit	7
Voltage Chart	-

SECTION IV: ALIGNMENT PROCEDURES

Transmitter Alignment Test Set-Up 9
23 mHz Oscillator Circuit Alignment9
15 mHz Oscillator Circuit Check 10
First Mixer, 38 mHz Alignment 10
Second Mixer, 27 mHz Alignment 10
Final Stage Alignment 10
Moduation Sensitivity Alignment 10
Frequency Check 10
P-RF Meter Adjustment11
Receiver Alignment Test Set-Up11
Receiver Sensitivity Adjustment11
Squelch Adjustment11
S-Meter Adjustment11
Component Layout 12
Schematic Diagramfoldout

SECTION V: PARTS LIST

SECTION 1

GENERAL INFORMATION

GENERAL DESCRIPTION

The Hy-Range Model 673 is a full 23-channel transceiver designed and licensed for Class "D" operation as designated by the F.C.C.

This transceiver is completely solid state, and provides you with a compact unit of high reliability and low power consumption. This transceiver utilizes a highly advanced, unique system of frequency synthesization enabling immediate operation on all 23 channels without the need of additional crystals or adjustments. Additional features include a built-in factory tuned TVI trap and jack for external VFO ''Slider'' (optional) Model 675 and an ANL switch to reduce undesirable noises.

The Hy-Range 673 transceiver is designed to operate from 105/120 AC to 50/60Hz. To obtain the best results from your transciver, it is suggested that you read all the instructions contained in your manual.

NOTE

It is illegal to transmit with this transceiver until you obtain your citizens band Class "D" license. You are also required to read and understand Part 95 of the F.C.C. rules and regulations before operation of this unit. License Form 505 and Part 95 regulations may be available from your dealer; if not, you may obtain copies from the Superintendent of Documents, Government Printing Office, Washington, D.C. 20402.

It is also prohibited by the F.C.C. to adjust the transmitter circuit of this unit unless you hold a current First or Second Class Radiotelephone License.

SPECIFICATIONS

CB Receiver Section

Circuit Type	Dual conversion superheterodyne with RF stage and 455 kHz mechanical filter
Frequency	23 crystal-controlled channels in the 27 mHz Citizens Band
Sensitivity	0.7 uV for 10 db S+N/N ratio
IF Frequency	1st IF: 11.275 mHz 2nd IF: 455 kHz
Audio Output	3 watts maximum
Receiving Current Drain	About 14 VA on standby (no signal)
CB Transmitter Section	
Frequency	23 crystal-controlled channels in 27 mHz Citi- zens Band
Power Input	5 watts

- 1 -

Emission	8A3
Spurious Response Rejection	All harmonic & spurious suppression better than FCC and D.O.T. requirements
Modulation	AM, 90% typical
Range Boost	Yields high average modulation at average voice levels
Transmitting Current Drain	Less than 30 VA
Antenna	Nominal 50 ohms impedance
Power Source	105/120 VAC 50/60 Hz

SECTION II

OPERATING INFORMATION

FRONT PANEL	Power/Volume Switch - To turn the power on, rotate the knob clockwise. Further rotation will increase the sound output from the speaker. To turn the power off, rotate the knob counter-clockwise until the click which indicates that the power is cut off from the power supply is heard.
	Squelch Control - This control is used to eliminate annoying background noise at no signal. To adjust the squelch control properly, first, turn the knob counter- clockwise until background noise is heard. Then, rotate the knob slowly clockwise until the background noise just disappears. At this point, the receiver will be relatively quiet under no signal conditions, but an incoming signal will overcome the squelch action and be heard. Since this control is variable, it can be used to provide varying degrees of sensitivity to incoming signals. As the control is advanced from the extreme counter-clockwise position the squelch action is progressively increased and stronger signals are needed to overcome it. To re- ceive extremely weak signals or to disable the squelch circuit, simply turn the control fully counter-clockwise.
	Channel Selector - Continuously rotating switch, selects any one of 23 channels for transmit and receive operation.
	Signal Strength/RF Power Meter - During reception, the built-in meter provides a relative indication of signal strength in "S" unit on the lower scale and thus offers basis for comparison between one incoming signal and another.
	During transmit, this will provide an indication of antenna RF power on the upper scale. As you speak, the pointer should ''flicker'' slightly, indicating that you are modulating the RF carrier.
INSTALLATION	Location - Before installing the transceiver, choose the location which is pro- tected from moisture and excessive heat, and is convenient to operate.
	Power Connection - This transceiver is designed to operate from 105/120 V, 50/60 Hz AC. Connect the power cord to the AC outlet supplying 105-120 VAC.
	Antenna Cable Connection - The antenna should be connected to the transceiver by means of coaxial cable. Either RF-58/U or RF-8/U coaxial cable is ideal for this purpose. The antenna lead-in cable should be terminated with a PL-259 type male coaxial connector which should be attached to the matching ANT connector at the rear of the transceiver.
	Fine Tuning - This will be used for clear reception of stations that are slightly off frequency. Rotate the knob for clearer reception.
	ANL (Automatic Noise Limiter) Switch - This switch, when placed in ON position, reduces undesirable noises. Place the switch in "ON" position when the unit is used in noisy areas.
	MIC Jack - Connect the push-to-talk microphone to this jack.

Phone Jack - Use a headphone for private listening. Inserting the headphone plug silences the internal speaker automatically.

AC Power Cord - Connect the power cord plug to the AC outlet supplying 105-120V, 50/60 Hz AC.

AC Power Fuse - When replacing the fuse, always use the same type of fuse, 125 V 3/4 A.

VFO Connector - This is provided for future connection of an external VFO (optional). When the VFO is not used, the two pin terminals must be connected to each other as illustrated. If they are not connected, your transceiver will not operate.

Connect two (of nine) pin terminals to each other, when the VFO is not used.

TVI Trap - Adjustable coil for minimizing TV interference. Preset at factory and does not usually require readjustment.

Ant Load - To obtain the best matching to your antenna system used, this will be adjusted for the minimum antenna reflection. However, this control is preset at the factory and should not be adjusted unless you have not precision test equipments.

CB Transmitter Operation -

IMPORTANT

Do not try to transmit without a CB antenna connected to the antenna connector on the rear panel.

1. Connect the microphone to the Microphone Socket.

2. Turn the power on.

3. Turn CB channel selector to a desired channel.

4. Depress the push-to-talk button on the microphone. Hold the microphone 4 to 6 inches from the mouth. Speak at a normal level. During periods of transmission, the receiver is silenced and reception is therefore impossible. In the same way, your signal can not be heard by another station when he is transmitting, each must take turns.

5. To receive, simply release the microphone push-to-talk button.

SECTION III

CIRCUIT DESCRIPTION

SCOPE

Q101, 23 mHz oscillator circuit, Q102, 15 mHz oscillator circuit and Q103, mixer are always operated regardless of transmit and receive mode of operation, when the channel selector switch is placed in the position other than between 22 and 23 channel. The channel selector, rotary switch S2a and S2b, has such mechanism that S2a moves one step at every four steps of S2b. The channel selector switch also has a neutral position between 22 and 23 channel and at that position common terminals are open circuited, making Q101 and Q102 oscillation stop, resulting in no transmit and receive operation.

Q104 is a 11.275 mHz oscillator circuit for transmit and Q110 is a 11.730 mHz oscillator circuit for receive operation. The power supply to both circuits will be closed or opened by the relay which in turn is controlled by the push-to-talk switch on the microphone. Thus one of two circuits is always being operated.

TRANSMISSION

The power line to the Q104, Q106, Q107 and Q1 will be closed by the relay when the push-to-talk switch is depressed and the transmitter circuits will operate. When the channel selector switch (S2abc) is placed in CH1 position, 23.290 mHz and 14.950 mHz crystals will be connected to the base of Q101 and Q102 respectively. These two frequency voltages are fed to the first mixer Q103 through C161 and C156 respectively, and converted into 38.240 mHz as follows:

1st Mixer: 23.290 + 14.950 = 38.240 mHz (L101 is a 23 mHz nand oscillator coil.)

This obtained, the 38.240 mHz voltage is then added to the 2nd Mixer Q105 through a 38 mHz tuned-circuit consisting of C164, L102, C168, L103, C167 and L104 and a coupling capacitor C170. While Q104 is being oscillated, as previously stated, at a frequency of 11.275 mHz, this is also fed to the 2nd Mixer, thus two frequencies are converted into the 26.965 mHz transmitting frequency.

2nd Mixer: 38.240 - 11.275 = 26.965 mHz

This 26.965 mHz signal is then amplified by Q106, Q107, and Q1 to the required level for transmission. (L105, L106, L107, L108/C183, L109/C186 and C187 are 27 mHz band filter coils. L110, L111, C190 and VC-2 constitute a pi-type filter for antenna impedance matching.)

When the channel selector switch is placed in the CH2, CH3 or CH4 position, Q102 will oscillate at 14.960 mHz, 14.970 mHz or 14.990 mHz respectively, while Q101 will continuously oscillate at the same frequency, 23.290 mHz, during above four switch positions.

When the channel selector switch is placed in the CH5 position, Q102 oscillates at a frequency of 14.950 mHz due to the previously stated switching mechanism of S2a and S2b. On the other hand, Q101 changes its oscillating frequency from 23.290 mHz to 23.340 mHz. Then both frequencies are fed to the first Mixer and converted into the following frequency.

1st Mixer: 23.340 + 14.950 = 38.290 mHz

The resulting 38.290 mHz output is fed to the 2nd Mixer as previously described and converted into the CH5 transmitting frequency.

2nd Mixer: 38.2901 - 11.275 = 27.0 15 mHz (CH5 transmitting frequency)

In a similar manner, each channel frequency will be made as follows:

CH 5 23.340 + 14.950 - 11.275 = 27.915 mHz CH 6 23.340 + 14.960 - 11.275 = 27.025 mHz CH 7 23.340 + 14.970 - 11.275 = 27.035 mHz CH 8 23.340 + 14.990 - 11.275 = 27.055 mHz CH 9 23.290 + 14.950 - 11.275 = 27.065 mHz CH 22 23.540 + 14.960 - 11.275 = 27.225 mHz CH 23 23.540 + 14.990 - 11.275 = 27.255 mHz

NOTE

Capacitors C171 and C197 are inserted to compensate the spread of crystal frequency and they may not be used in some models.

In receive mode, the power supply to transistors, Q104 through Q107 and Q1, is cut off by the relay circuit and the transmitter stops its operation. On the other hand, the power is supplied to transistors, Q108 through Q112, making the receiv circuit ready to operate.

When there is an input signal of 26.965 mHz (CH1) on the antenna circuit with the channel selector switch in CH1 position, the signal will be fed to the Q1 collector through the pi-type filter circuit consisting of L11, L110, C190 and VC2 (antenna impedance matching circuit). Q1 collector signal is then fed to the Q108 base-grounded amplifier through series-tuned 27 mHz circuit C101 and L112) and amplified. This output is finally fed to the Q109 Mixer base through L113 27 mHz tuned circuit.

Q 109 is a mixer and 38.240 mHz signal is also added to the base-of this transistor. Thus the first IF frequency, 11.275 mHz, will be made as below:

1st IF frequency: 38.240 - 26.965 = 11.275 mHz

This 11.275 mHz signal is then applied to the mixer diode, D109 through L114, and L115 IF tuned-circuit. At the same time 11.730 mHz signal from Q110 is applied to D109 through C127, R187 and L116 and the two signals are converted into 455 kHz 2nd IF frequency.

2nd IF frequency: 11.730 - 11.275 = 0.455 mHz

This 455 kHz IF signal is then fed to the L117, L118 455 kHz IF coil, mechanical filter, Q111, Q112, L119 detector coil and finally D106 detector. In this way audible sound will be obtained.

 $D\,10\,1$ is a switching diode which shorts the receiver input circuit during transmission operation.

RECEPTION

D102 is a signal overload protector. R121, R122, R120, D108, R118, R119, D103 and C119 constitute automatic noise limiter.

D104 and D107 are rectifiers to obtain DC voltages for meter drive in both transmit and receive operation. In a similar way, input signals on other channels will be detected into audible signals as follows:

CH22 23.540 + 14.960 = 38.500 mHz - 27.225 mHz = 11.275 - 11.730 mHz = 455kHz CH23 23.540 + 14.990 = 38.530 mHz - 27.255 mHz = 11.275 - 11.730 mHz = 455kHz

AUDIO CIRCUIT The audio circuits consist of a microphone amplifier Q115, preamplifier (for receive) Q114, driver Q116, 'B' Class power amplifier Q2/Q3 and squelch transistors: Q115 is powered only in transmit operation and Q114/Q113 in receive operation.

In transmit operation, the audio signals from microphone will be amplified through the following path: C132-Q115-C138, R143-Q116-T101-Q2/Q3-T2. The amplified signal obtained from the secondary coil of T2 is then fed to the Q107 and Q1 collector circuit through the relay circuit. At the same time, the power source will also be applied to these transistors, during transmit operation, thus the audio signal will modulate the RF carrier.

RANGE BOOST CIRCUIT

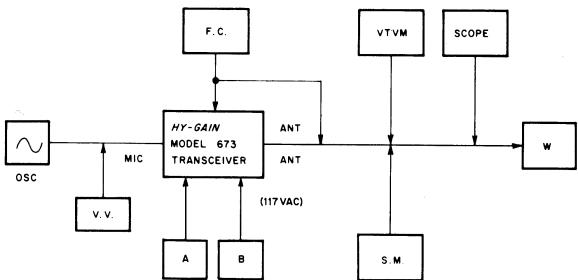
A part of the output is rectified by D105 and its DC output is applied to the emitter of Q115; decreasing the gain of Q115. Thus overmodulation due to excessive high signal input will be avoided.

In reception, the audio signal is fed to the following circuits: Volume -- C142 -- R154 -- Q114 -- R142/C137 -- Q116 -- T101 -- Q2/Q3 -- T2 -- C143 -- and finally drives the loud speaker.

VOLTAGE CHART

Transistor	Emitter(V)	Base (V)	Collector (V)
Q 1	0	-0.4 *	11.0 *
Q 2,3	0.07	0.6	12.8
Q 4	0	-0.22	5.0
Q 10 1	3.8	4.6	10.0
Q102	2.3	2.9	10.5
Q103	2.7	3.5	10.1
Q104	2.8 *	3.4 *	12.0 *
Q 105	0.8 *	1.3 *	12.5 *
Q106	0.6 *	1.2 *	12.5 *
Q 107	0	-0.1 *	10.0 *
Q108	0.9	1.5	11.5
Q 109	0.8	1.4	10.5
Q 110	2.8	3.4	11.8
Q111	0.8	1.4	12.0
Q112	0.9	1.5	11.0
Q113	0	-0.1	9.0
		(0.6)	(0.1)
Q114	2.5	3.1	6.7
Q1 15	2.3 *	2.9 *	7.0**
Q116	1.6	2.2	11.0
Q30 1	-0.22	-0.35	- 5.0

* Volts at transmit condition


~

() Squeich on

SECTION IV

ALIGNMENT PROCEDURES

TRANSMITTER ALIGNMENT TEST SET- UP

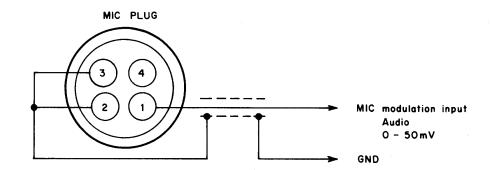
OSC	Audio Signal Generator
V.V.	Audio Level Meter, 1 mV measurable
А	DC Ampere-Meter
В	AC 117V, 50/60 Hz
F.C.	Frequency Counter, 0 - 40 mHz
VTVM	RF Volt Meter
SCOPE	Oscilloscope, 30 mHz
SM	Spurious Meter, 27 mHz band, built-in B.E.F.
	1 mV measurable
W	Power Meter, 50 ohm, 50W, thermo-couple type

NOTE

When connecting DC ampere-meter, cut a jumper wire (RFC-102) and connect the meter between the both ends of jumper wire. After removing the meter, solder the jumper wire as is. It is recommendable to connect a RF coil/by-pass capacitor in series with the meter.

Place the channel selector in 13CH position. Slowly rotate L 101 core in direction from top to bottom until the oscillator just begin to oscillate. This oscillation starting point will be indicated by a rapid increase of Q101 emitter voltage (A DC voltmeter should be connected between Q101 emitter and chassis ground during this alignment). Further rotate the L1 core 1/2 turn in the same direction (clockwise) from that oscillation starting point. Finally make sure the oscillating frequency is within \pm 300 Hz from the standard oscillating frequency (crystal frequency).

23 mHz OSCILLATOR CIRCUIT ALIGNMENT


15 mHz OSCILLATOR CIRCUIT CHECK

FIRST MIXER, 38 mHz ALIGNMENT frequency. Connect an oscilloscope to the No. 24 terminal on the printed circuit board and

Make sure oscillating frequency of Q102 is within \pm 300 Hz of the specific

adjust L102, L103 & L104 for maximum amplitude. (It is recommendable that this alignment will be performed in receive mode.)

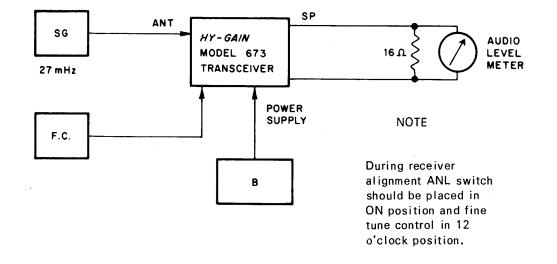
SECOND MIXER, 27 mHz ALIGNMENT Set the unit in transmit mode and adjust L105, L106, L107, L108 & L109 for maximum reading on the watt meter. Moreover check for no abnormal oscillation using oscilloscope. To set the unit in transmit mode, the following pad will be used.

FINAL STAGE ALIGNMENT Adjust L 110, L1 11 and VC2 for maximum power output but the collector current of Q1 does not exceed 380 mA. Next, apply 1 kHz modulating signal to the microphone input terminal and check for normal modulation characteristics, using a oscilloscope.

MODULATION SENSITIVITYModulate the transceiver as in previous paragraph, feeding 10 mV audio signal
and adjust RV 103 for 100% modulation.

FREQUENCY CHECK Set the unit in transmit condition and check transmitting frequency accuracy. Each channel frequency should be within ± 800 Hz from respective channel center frequency. When every channel has a same tendency of rising or falling frequency, they will be corrected within ± 300 or 400 Hz by removing or shorting the one of two capacitors connected to the crystal 101, in series. When the channel frequency of a given channel does not fall within ± 800 Hz, check crystal units according to the following table.

Defective Channel	Check
CH 1 - 4	Crystal 201 23,290 mHz
CH 5-8	Crystal 202 23.340 mHz
СН 9 - 12	Crystal 203 23.390 mHz
CH 13 - 16	Crystal 204 23.440 mHz
CH 17 - 20	Crystal 205 23.490 mHz
CH 21 - 23	Crystal 206 23.540 mHz
CH 1,5,9,13,17,21	Crystal 207 14.950 mHz
CH 2,6,10,14,18,22	Crystal 208 14.960 mHz
СН 3,7,11,15,19	Crystal 209 14.970 mHz
CH 4,8,12,16,20,23	Crystal 210 14.990 mHz


Connect a spurious meter to the antenna connector and adjust L1 (T.V.I.) for minimum 2nd harmonics (54 mHz) at no modulation.

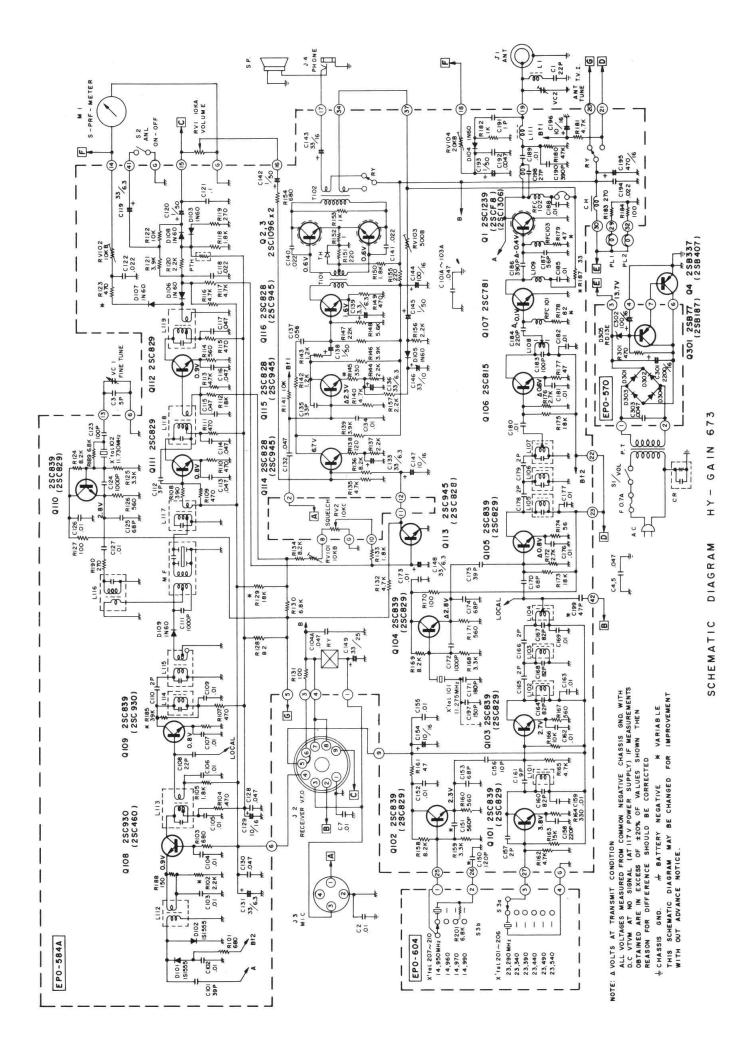
P-RF METER ADJUSTMENT


Adjust RV104 so that the P-RF meter pointer indicates the same level as the reading of the watt meter connected to the unit.

-

RECEIVER ALIGNMENT TEST SET-UP

RECEIVER SENSITIVITY ADJUSTMENT	Connect a signal generator output, 27.115 mHz, 1 kHz 30% mod, to the receiver with the selector switch placed in 13CH position. Adjust L112, L113, L114, L115, MR, L117, L118 and L119 for mximum audio output.
SQUELCH ADJUSTMENT	Connect a level meter across the speaker terminal. Set signal generator attenua- tor to provide 74 db, 1 kHz, 30% mod. output and receive this signal. Set the squelch volume on the transceiver to minimum and note the level meter reading. adjust FV101 so that the level meter reading is decreased by 6 db.
S-METER ADJUSTMENT	Adjust RV102 so that the meter pointer indicates ''9'' at the RF input signal of 40 db.



HY GAIN 672, 673

NOTE: 1. ALL PARTS INDICATED BY DOTTED LINE BE USED FOR ONLY MODEL 672 AND NOT USED FOR MODEL 673.

2. JUMPER WIRES INDICATED BY +++++ LINE WILL BE USED FOR ONLY MODEL 673.

- 12 -

SECTION V

PARTS LIST

Parts Name	Description	Part No.	Symbol
Transistor	2SC-1239	EQS-86	Ql
Transistor	2SC-1096	EQS-89	Q2,3
Transistor	2SB-337 (B)	EQG-8	Q 2 , 3 Q4
Volume Control	EVC-B85K30A14	EQG-8 ERV-134	RV1/s1
Volume Control	EVH-A8AK30C14	ERV-134 ERV-135	RV1/S1 RV2
Variable Condenser	EVII-AGARJUCI4	ECV-30	RV Z
Toggle Switch		ECV-30 EST-4	S2
Speaker	EAS-9D75S	ESI-4 EAS-14	SP
-	EA3-30733	EAS-14 EAM-14	MIC
Microphone Meter			
Pilot Lamp		EMM-48	MI
		EZP-6	PL1
Pilot Lamp		EZP-21	PL2
Fuse Holder		EZS-1	F
Fuse 0.7A		EZF-4	-1
ANT Jack		EZS-66	J1
V.F.O. Jack		EZS-89	J2
MIC Jack		EZS-60	J3
PHONE Jack	•	EZS-79	J4
Power Transformer		ETP-66	P.T
Power Cable		EZZ-1U	
Cord Stopper		EZZ-25	G D
CR Module		ECR-12	CR
Lug		EZL-L3B	LG
Trimmer Capacitor		ECV-5	VC2
T.V.I. Trap Coil	700 D05000	ETR-18	Ll
Ceramic Capacitor	ECC-D05220K		C1
Ceramic Capacitor	RD208YZ103P50		C2
Ceramic Capacitor	ECC-D05473ZV		C4,5 C3
Ceramic Capacitor FCC Card	ECC-D05070C	EBP-26	03
FCC Label		EBP-20 EBP-40	
FCC Application Sheet		EBP-98	
Instruction Manual		EBP-244	
P.C. Board Complete		EC52-L3	
P.C. Board		EPO-584	
Transistor	2SC-829 (B)	EQS-5	Q111,112
Transistor	2SC-839 (H)	EQS-100	Q101-105,110
Transistor	2SC-838 (S)	EQS-9	Q114-116
Transistor	2SC-934 (P)	EQS-131	Q113
Transistor	2SC-815 (K)	EQS-22	Q106
Transistor	2SC-781	EQS-57	Q107
Transistor	2SC-930 (B)	EQS-139	Q108,109
Diode	1N60	EDG-3	D104-110
Diode	1S-1555	EDS-1	D101-102
Crystal	11.275MHZ	EXT-2	X'tal-101
Crystal	11.730MHZ	EXT-2	X'tal-102
Relay		EZR-6	
Input Transformer		ETA-41	T101

Parts Name	Description	Part No.	Symbol
Output Transformer Audio Choke Coil Posistor Thermistor Heat Sink for 2SC-781 Shield Plate Mechanical Filter Test Pin Tie Point	23D25F	ETA-42 ELA-2 EDP-1 EDT-15 MYO-8 MC45P6 EFC-3 MYO-128 MYO-9	T102 CH PTH TH
RF Choke Coil Potentiometer 100kB 2-leg Potentiometer 500 B 2-leg Potentiometer 200kB 2-leg O.S.C. Coil RF Coil	EVL-T5AA00B52	ELR-4 ETR-247 ETR-248 ETR-249 ETR-30 ETR-31 ETR-22 ETR-197 ETR-17	RFC101-103 RV101,102 RV103 RV104 L101 L102,103 L104 L105,106 L107 L108 L109 L110
RF Coil ANT. Coil RF Coil RF Coil RF Coil I.F. Coil I.F. Coil I.F. Coil I.F. Coil Carbon Resistor ½W 680 ohm	ERD-14TJ681	ETR-232 ETR-194 ETR-104 ETR-255 ETR-256 ETR-255 ETI-16 ETI-17 ETI-18	L111 L112 L113 L114 L115 L116 L117 L118 L119 R101,103,104,
Carbon Resistor ¼W 2.2Kohm Carbon Resistor ¼W 470 ohm	ERD-14TJ222 ERD-14TJ271		R102,120,137, 156,157 R104,107,109, 110,111,115, 123,149
Carbon Resistor ¼W 1.8Kohm Carbon Resistor ¼W 330 ohm Carbon Resistor ¼W 390 ohm Carbon Resistor ¼W 18Kohm	ERD-14TJ182 ERD-14TJ331 ERD-14TJ391 ERD-14TJ183	7	R105,118,133, 150 R106,145,164 R108 R112,129,173,
Carbon Resistor ½W 4.7Kohm	ERD-14TJ472		175 R113,116,117, 132,135,140, 162,165,181
Carbon Resistor ½W 560 ohm Carbon Resistor ½W 270 ohm Carbon Resistor ½W 3.9Kohm Carbon Resistor ½W 10Kohm Carbon Resistor ½W 8.2Kohm	ERD-14TJ561 ERD-14TJ271 ERD-14TJ392 ERD-14TJ103 ERD-14TJ822		R114,126,160, 169,171 R119 R121,139,146 R122,141,166 R124,134,136, 158,169
Carbon Resistor ½W 3.3Kohm	ERD-14TJ332		R125,159,168

- 14 -

Parts Name	Description	Part No.	Symbol
Carbon Resistor ½W 100 ohm Carbon Resistor ½W 82 ohm Carbon Resistor ½W 6.8Kohm Solid Resistor ½W 100 ohm Carbon Resistor ½W 120 ohm Carbon Resistor ½W 1.2Kohm Carbon Resistor ½W 2.2Kohm Carbon Resistor ½W 5.6Kohm Carbon Resistor ½W 220 ohm Metal Oxide Resistor	ERD-14TJ101 ERD-14TJ820 ERD-14TJ682 ERC-12GK101 ERD-14TJ121 ERD-14TJ122 ERD-14TJ223 ERD-14TJ562 ERD-14TJ221		R129,170 R128 R130 R131 R138 R142,143,144 R147 R148 R159,155
1W, 0.3 ohm Carbon Resistor ¼W 1Kohm Carbon Resistor ¼W 47 ohm Carbon Resistor ¼W 15Kohm Carbon Resistor ¼W 2.7Kohm Carbon Resistor ¼W 56 ohm Carbon Resistor ¼W 82 ohm Carbon Resistor ¼W 82 ohm Carbon Resistor ¼W 82 ohm Solid Resistor ½W 270 ohm Solid Resistor ½W 100 ohm Ceramic Capacitor 39pF 50V Ceramic Capacitor.01uF 50V	ERX-IANJOR3 ERD-14TJ102 ERD-14TJ470 ERD-14TJ153 ERD-14TJ272 ERD-14TJ560 ERD-14TJ820 ERD-14TJ473 ERC-12GK271 ERC-12GK271 ERC-12GK101 ECC-D05390K RD208YZ103P50		R152 R153,182 R161,177,179 R163 R172,176 R174 R178 R180 R183 R184 C101,175 C102-107,109, 121,134,152, 155,159,162,
Ceramic Capacitor 22pF 50V Ceramic Capacitor 2pF 50V Styroflex Capacitor.00luF Ceramic Capacitor 3pF500V Ceramic Capacitor.047uF25V Ceramic Capacitor.022uF50V Elyt. Capacitor 33/6V Elyt. Capacitor 1/50V	ECC-D05220K ECC-D05020C ECQ-S1102KX ECC-D5030C DD624BC473M25 RD209YZ223P50 ECE-A6V33N ECE-A50V1N		164,169,173, 176,177,180, 181,182,185, 188,198 C108 C110 C111 C112 C113-117,121, 128,130,132 C118,122,144 C119,131,133, 136,139,148 C120,138,142, 145,193
Ceramic Capacitor 82pF 50V Mylar Capacitor .001uF 50V Ceramic Capacitor 68pF 50V Ceramic Capacitor 56pF 50V Elyt. Capacitor 10/16V Ceramic Capacitor 33pF 50V Mylar Capacitor.056uF 50V Ceramic Capacitor.022uF 25V Elyt. Capacitor 33/16V Elyt. Capacitor 100/16V	ECC-D05820K ECQ-M05102KZ ECC-D05680K ECC-D05560K ECE-A16V10N ECC-D05330K ECQ-M05563KZ DD610BC223M25 ECE-A16V33N ECE-A16V100N		C123 C124,151,172 C125,153,170, 174 C127,187 C129,147,154, 196 C135 C137 C140,141 C143 C144