This Information Is Provided By

CBTricks.com

Cobra 23 Plus Service Manual

Liability of damages to any equipment is the sole responsibility of the user! Downloading, viewing, or using any information provided on these pages automatically accepts the user to the terms of this agreement!

Modifications are provided for information purposes only!

Supporters of CBTricks.com paid for the hosting so you would have this file.

CBTricks.com is a non-commercial personal website was created to help promote the exchange of service, modification, technically oriented information, and historical information aimed at the Citizens Band, GMRS (CB "A" Band), MURS, Amateur Radios and RF Amps.

CBTricks.com is not sponsored by or connected to any Retailer, Radio, Antenna Manufacturer or Amp Manufacturer, or affiliated with any site links shown in the links database. The use of product or company names on my web site is not endorsement of that product or company.

The site is supported with donations from users, friends and selling of the Site Supporters DVD's to cover some of the costs of having this website on the Internet instead of relying on banner ads, pop-up ads, commercial links, etc. Thus I do not accept advertising banners or pop-up/pop-under advertising or other marketing/sales links or gimmicks on my website.

ALL the money from donations is used for CBTricks.com I didn't do all the work to make money (I have a day job). This work was not done for someone else to make money also, for example the ebay CD sellers.

All Trademarks, Logos, and Brand Names are the property of their respective owners. This information is not provided by, or affiliated in any way with any radio or antenna Manufacturers.

Thank you for any support you can give.

For information on how to Support CBTricks.com http://www.cbtricks.com/support/

SERVCE MANUAL

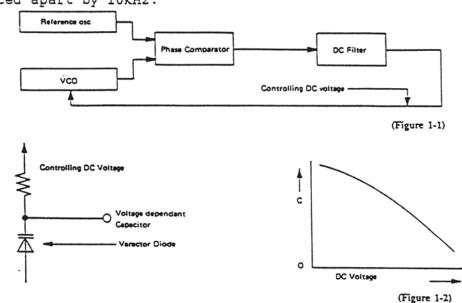
Sobras 23 PLUS CB RADIO

America's Most Recognized Name In CB Communication

MODEL 23 PLUS

6500 West Cortland Street • Chicago, Illinois 60635 (312) 889-8870 • Chicago, Illinois 60635 TELEX: 244-332

TABLE OF CONTENTS Model 23 PLUS


Operating Theory of P.L.L. Frequency Synthesizer	26
Transmitter Circuit	29
Receiver Circuit	31
Weather Band Circuit	33
P.C.B. Top View	35
P.C.B. Bottom View	36
Wiring Diagram	37
P.C.B. Wiring Diagram	38
Semiconductor Lead Identification and IC Internal Diagram	39
Semiconductor Complement and Function	41
Voltage Chart	42
Exploded View	43
Exploded View Part List	44
Part List	45
Block Diagram	46
Schematic Diagram	47

1. OPERATING THEORY OF P.L.L. FREQUENCY SYNTHESIZER

1-1 Fundamental Theory of PLL Circuitry

The purpose of P.L.L. (Phase Locked Loop) circuit is to generate multiple number programmable frequencies from a signal reference frequency with quartz crystal accuracy. A basic PLL circuitry consists of reference oscillator, VCO phase comparator and DC filter (low pass filter). With the above circuit the VCO (Voltage Controlled Oscillator) Frequency is effectively locked to the reference oscillator and its accuracy is as good as the reference oscillator.

Since the CB radio's adjacent channel spacing is 10kHz (or multiple of 2.5kHz), our purpose should be to produce multiple of programmable frequencies that are spaced apart by 10kHz.

expanded as

Therefore the basic PLL circuitry is follows:

Note that the reference frequency of 2.5kHz is obtained by dividing the 10.24mhz by 4096 times. (2.5kHz reference is used instead of 10kHz for division convenience).

See Table 1 for transmit/receive mode VCO frequencies. The most important part of VCO circuitry is a voltage controlled variable capacitor called vari-cap or varactor diode whose capacitance depends on DC voltage applied to its cathode.

The varactor diode is responsible for setting VCO frequency, and once set it regulates the VCO frequency against the reference.

The VCO frequencies are chosen in 13 to 16mHz range as shown on Table 1.

To obtain transmit signal the VCO is doubled. example for channel 1:

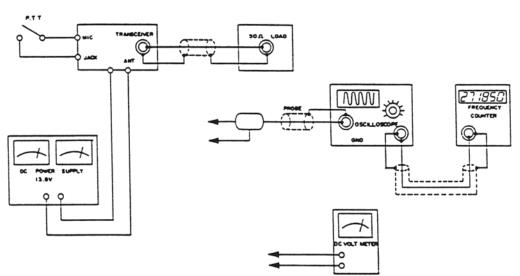
13.4825X2=26.965mHz.

For receiver mode the VCO is used as a first local oscillator. For channel 1: 26.965-16.27=10.695mHz.

The above first IF of 10.695 mHz is mixed again with 10.24 MHz crystal oscillator frequency which serves as the second local oscillator. 10.695-10.24=0.455 MHz.

As can be seen above the VCO frequency shifts from 13.4825 to $16.27 \rm MHz$ when changed from transmit to receive for the same channel 1.

The shift is accomplished by "read only memory" incorporated inside the PLL IC1 between the selector switch and the VCO divider (programmable).


When transmit logic signal is applied to the IC1 through pin 30, the programmable divider will divide incoming VCO frequency by 5393 to product 2.5kHz sampling signal. 13.4825÷5393=2.5kHz.

For the receiver mode the programmable divider will automatically change to divide the VCO frequency by 3254.

16.27÷3254=5kHz.

1-2 PLL Circuit Alignment

PLL AND CARRIER SECTION

(Figure 1-3)

1-3 10.24mHz

Connect a frequency counter to the pin 20 and check to see 10.240000MHz-100Hz. When a defective crystal is replaced, and if the frequency is higher than by 100Hz, the CTI should be increased. If the frequency is lower the CTI should be reduced in capacitance.

1-4 VCO Alignment

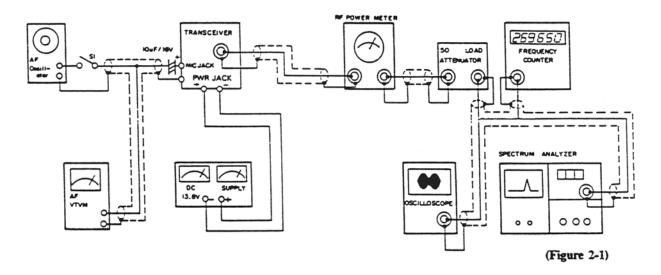
- Set the radio to channel 40 and in receive mode.
- Connect a circuit tester between C412 and ground.
- 3. Adjust L401 to obtain 3V DC.
- 4. Set the radio to channel 1 and in receive
- Check to see the TP/DC voltage dropping to a level between 1.3 to 1.5V DC.

As long as the DC level stays between 3V DC for receiver at channel 40 and 1.3 to 1.5V DC for receiver at channel 1 the VCO is set properly.

1-5 Frequency chart

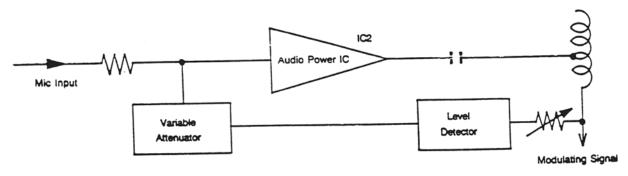
(Table 1)

CH	CHANNEL	CRYSTAL	VCO		
NO.	FREQ (MHz)	OSC	TX	RX	
1	26.965	10.24	13.4825	16.27	
2	26.975	10.24	13.4875	16.28	
3	26.985	10.24	13.4925	16.29	
4	27.005	10.24	13.5025	16.31	
5	27.015	10.24	13.5075	16.32	
6	27.025	10.24	13.5125	16.33	
7	27.035	10.24	13.5175	16.34	
8	27.055	10.24	13.5275	16.36	
9	27.065	10.24	13.5325	16.37	
10	27.075	10.24	13.5375	16.38	
11	27.085	10.24	13.5425	16.39	
12	27.105	10.24	13.5525	16.41	
13	27.115	10.24	13.5575	16.42	
14	27.125	10.24	13.5625	16.43	
15	27.135	10.24	13.5675	16.44	
16	27.155	10.24	13.5775	16.46	
17	27.165	10.24	13.5825	16.47	
18	27.175	10.24	13.5875	16.48	
19	27.185	10.24	13.5925	16.49	
20	27.205	10.24	13.6025	16.51	
21	27.215	10.24	13.6075	16.52	
22	27.225	10.24	13.6125	16.53	
23	27.255	10.24	13.6275	16.56	
24	27.235	10.24	13.6175	16.54	
25	27.245	10.24	13.6225	15.55	
26	27.265	10.24	13.6325	16.57	
27	27.275	10.24	13.6375	16.58	
28	27.285	10.24	13.6425	16.59	
29	27.295	10.24	13.6475	16.60	
30	27.305	10.24	13.6525	16.61	
31	27.315	10.24	13.6575	16.62	
32	27.325	10.24	13.6625	16.63	
33	27.335	10.24	13.6675	16.64	
34	27.345	10.24	13.6725	16.65	
35	27.355	10.24	13.6775	16.66	
36	27.365	10.24	13.6825	16.67	
37	27.375	10.24	13.6875	16.68	
38	27.385	10.24	13.6925	16.69	
39	27.395	10.24	13.6975	16.70	
40	27.405	10.24	13.7025	16.71	


2. TRANSMITTER CIRCUIT

The VCO frequency selected by the channel selector switch is doubled to generate desired transmit frequency. The doubling is done by the Q301.

The resulting transmit frequency is filtered by L301 and L302.


Q302 is an amplifier/switch circuit. When VCO frequency is out of "Lock" condition pin 18 of IC1 pulls down bias voltage of Q302 to ground disabling Q302 from passing possible illegal frequencies.

Q303 is a RF power driver circuit, and Q304 is the final RF power amplifier.

A modulating audio signal is applied to the collectors of Q303 and Q304 through a audio power transformer T1. The audio signal (mic input) is amplified by a single power IC2.

The modulation limiting is accomplished by an automatic level control circuit switch which is as follows:

(Figure 2-2)

L305 and C315 are series resonator, and L306, 307, C316 and C317 make up pie-low pass filter. L305, L306 is factory selected and limits the RF output power level to within the FCC limit of 4 watts.

2-1 RF Driver Stage Alignment

- 1. Select channel "19".
- Connect an oscilloscope to the base of Q302 and ground.
- Adjust L301, and L302 for maximum amplitude of scope display (27.185MHz signal).
- 4. Connect the scope to Q303 collector.
- Adjust L303 for maximum amplitude of scope display.

2-2 RF Power Amplifier Alignment

- 1. Set power supply voltage to 13.8V.
- Connect a watt meter to the antenna connector.
- Adjust L305 and L306 for maximum power indication.
 Also again touch up L301, L302 and L303 to peak power.
- When all coils are peaked, the power meter should indicate above 4.0 watts.
- Turn L305 and L306 until the power reading of 4.0 watts is obtained.

2-3 Transmit Frequency Check

- Set the radio into transmit mode with no modulation.
- 2. Connect the frequency counter to the antenna load or to the tab provided at the wattmeter. The frequency should be within $\pm 800 \text{Hz}$ from each channel center frequency as tabulated in the frequency table attached.

2-4 Modulation Sensitivity Alignment

- Set the unit into transmit mode and apply 6mV, 1kHz signal to the Mic input circuit.
- RV501 should be adjusted to obtain 85% modulation at this condition.
- 3. Next, decrease signal input to 10mV and observe that the modulation ratio is keeping the value higher than 30%.

2-5 Transmit Power Indicator Alignment

- Set the unit into transmit mode with no modulation.
- Adjust RV301 right after the NO.5 LED just lights on.

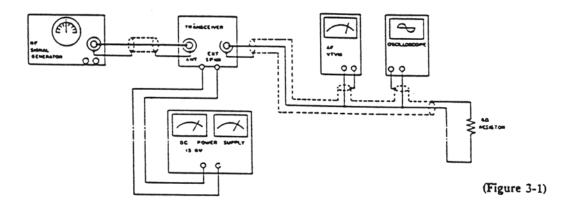
3. RECEIVER CIRCUIT

In the receiver mode of operation, Q305 transistor is turned off.

Also bias voltage is applied to Q108 and a proper bias and AGC voltage is established to Q102, Q103 and Q105.

Q102 is a 27MHz RF input amplifier and any excessive input signal is limited by diodes D101, 102.

The amplified 27MHz is mixed with VCO frequency selected by channel switch.


For channel 1 VCO is set at 16.27MHz. The resulting first IF is 26.965-16.27=10.695MHz.

Q103 is the first converter, and the 10.695MHz is sharply filtered by L103 and a ceramic filter CF-1.

The first IF is again mixed with a second local oscillator or $10.24 \, \mathrm{MHz}$. $10.695 - 10.24 = 0.445 \, \mathrm{MHz}$. Q104 is the second converter and the 455kHz second IF is filtered by a razor sharp ceramic filter of CF-2 coupled with L104, Q105, 106 (455kHz amplifiers).

D103 is a detector diode which produces audio signal as well as a negative DC voltage for AGC action. The negative voltage also provides forward biasing to the cathode of ANL clipping Tr of Q107.

The biasing voltage has a time constance determined by R130 and C123.

3-2 Receiver Sensitivity Alignment

- Set the signal generator at 27.185mHz, 1kHz and 30% modulation. Also set the radio to channel 19.
- Adjust L101, L102, L103, L104 and L105 for maximum audio output across the 8 ohm dummy load resistor. This alignment should be performed by gradually decreasing the signal generator output signal to a minimum level required for tuning to avoid inaccurate alignment due to AGC action.

3-3 Squelch Circuit Alignment

- Set the signal to provide RF input signal of 1000mV (lkHz, 30% modulation).
- 2. Rotate the squelch control in full clockwise direction.
- Temporarily adjust RV102 for maximum audio output, and note the audio output level. Then adjust RV102 so that the audio output level decreases by 6dB.

3-4 Receiver Signal Indicator Alignment

- Set the signal generator to provide RF input signal of 1000mV (1kHz, 30% modulation).
- Adjust RV101, right after the NO.4 LED just on.
- Reduce antenna input signal level to 1.0mV, and check to see the first LED light is on.

4. WEATHER BAND CIRCUIT

List of Test Equipment

- 1. Narrow-band crystal controlled FM signal generator with calibrated output from 100 microvolts to 1 microvolt and RF leakage less that 0.1 microvolt. Frequencies of 162.55, 162.475 and 162.40MHz ± 1kHz.
- Vacuum Tube Voltmeter or high input impedance solid state voltmeter.
- Oscilloscope.

General Preparation

- 1. Check source voltage for DC 13.8V.
- Set CHANNEL switch to channel being aligned.
- Use crystal controlled narrow-band FM generator for 162.55, 162.475 and 162.40mHz.
- Standard modulation is lkHz, ± 5kHz deviation for alignment and sensitivity tests.
- 5. Disconnect the Ant. wire from the Ant.

4-1 Weather Band Alignment Procedure

Note: During alignment, keep the RF input reduced to a level so that wave form is visible.

Step	Generator Connection	Generator Frequency	Channel	Meter Connection	Adjustment	Remarks				
1		162.475MHz	W2	Across voice coil of speaker	L602, 604	Adjust for max noise				
2					L601, 602, 604 and L603 (Stretch Squeeze)	Adjust for maximum output				
3	Repeat Step	Repeat Step 2 until no further improvement is possible								
4	Same as Step 1	162.40MHz	W3	Same is Step 1	L605	Adjust for maximum output				
5	Same as Step 1	162.55MHz	W1 Step 1	Same as	CT-2	Adjust for maximum output				

4-2 Weather band general specifications.

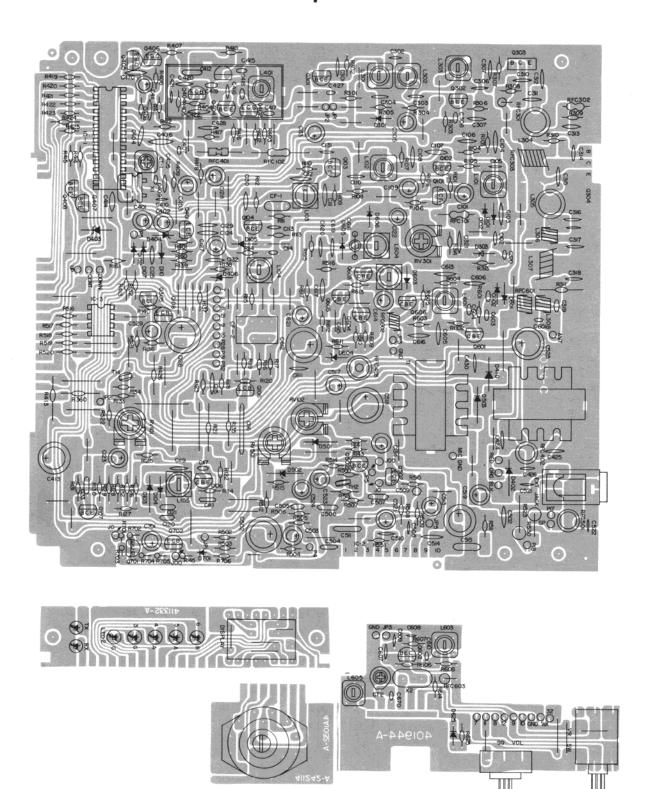
Test Condition

1. Speaker Impedance : 8 ohms (use resistive Load)

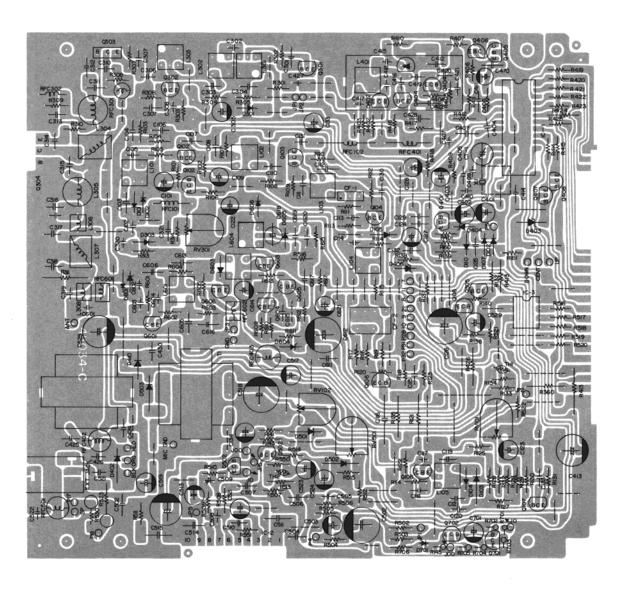
2. Reference Output Level : 500mW (total power)

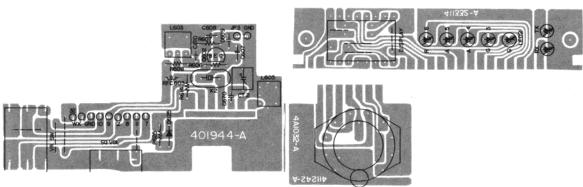
3. Ambient Temperature : 25°C

4. Power Supply : 13.8V D.C

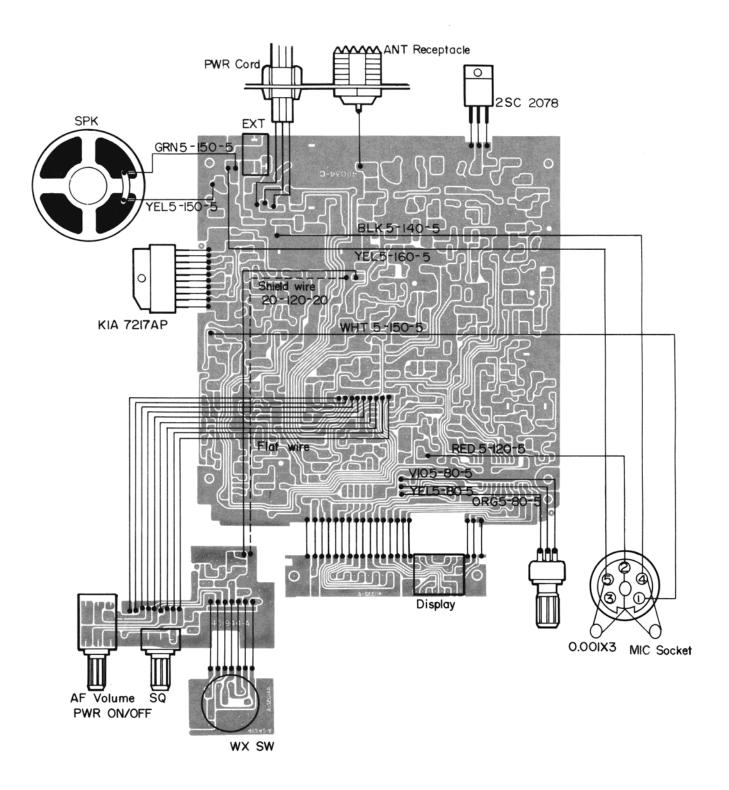

Weather

1. Test Frequency : 162.55MHz, 162.475MHz, 162.400MHz

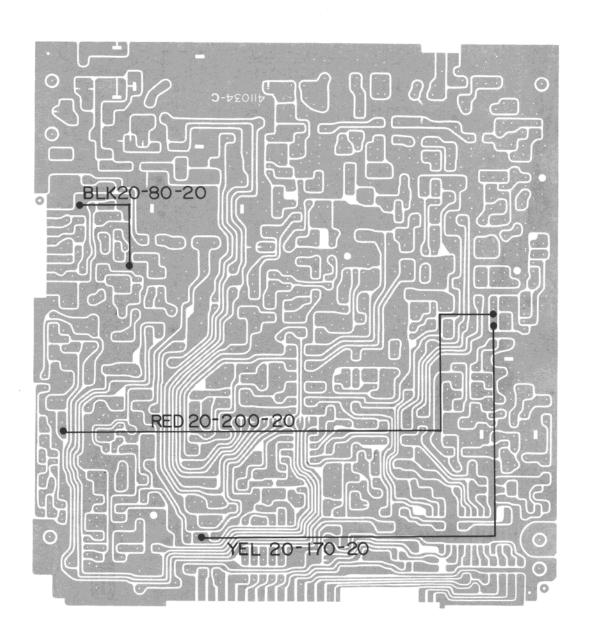

2. Modulation : 1KHz, \pm 5KHz deviation


	UNIT	NOMINAL	LIMIT
Sensitivity (6dB S/N)			
162.55MHz	uV	0.7	1.0
162.40MHz	uV	0.7	1.0
162.475MHz	$\mathbf{u}\mathbf{V}$	0.7	1.0
20dB Quieting Sensitivity			
162.55MHz	uV	0.7	1.0
162.40MHz	uV	0.7	1.0
162.475MHz	uV	0.7	1.0
- 30dB Limiting Sensitivity			
162.55MHz	uV	0.7	9.5
96.6 or 97.7MHz Rejection	dB	70	60
De-emphasis, 1000Hz to 2000Hz	dB	-6	-3 to -9
Distortion, 1mV input	9/0	3	10
10% THD power output, 1mV input	W	4.2	3.0
Maximum power output, 1mV input	W	4.5	3.5
Current drain at No. signal volume Min.	mA	180	200

Top View

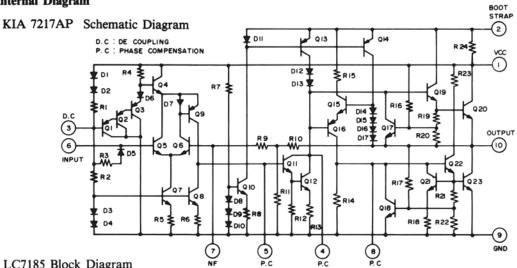


Bottom View

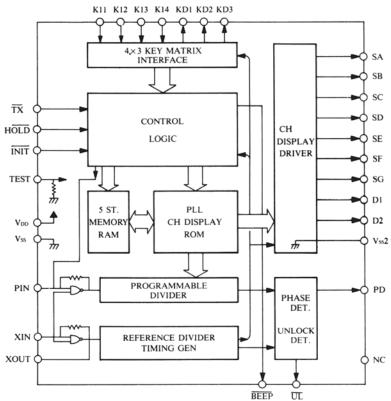


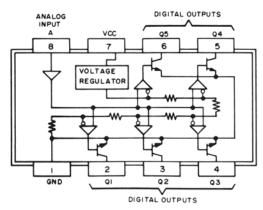
Wiring Diagram

P.C.B. Wiring Diagram



Semiconductor Lead Identification and IC Internal Diagram


Integrated Circuits


IC Internal Diagram

LC7185 Block Diagram

TL489CP Block Diagram

SEMICONDUCTOR COMPLEMENT AND FUNCTION

REF NO.	ТҮРЕ	FUNCTION IN RX	FUNCTION IN TX	MANUFACTURE
IC1	LC7185	P.L.L	P.L.L	SANYO
IC2	KIA7217AP	AUDIO AMP	AUDIO AMP	KEC
IC3	TL489CP	LED LAMP DRIVE	LED LAMP DRIVE	TI
Q101	KTC1923(O)	RF ATTENUATOR	NONE	KEC
Q102	KTC1923(O)	RF AMP	NONE	KEC
Q103	KTC1923(O)	FIRST MIXER	NONE	KEC
Q104	KTC1923(O)	SCOND MIXER	NONE	KEC
Q105	KTC380(Y)	IF AMP	NONE	KEC
Q106	KTC380(Y)	IF AMP	NONE	KEC
Q107	KTA1015(Y)	ANL	NONE	KEC
Q108	KTC1815(GR)	REGULATOR	REGULATOR	KEC
Q301	KTC1923(O)	NONE	DOUBLER	KEC
Q302	KTC1923(O)	NONE	RF PRE-AMP	KEC
Q303	2SC2314(E)	NONE	RF DRIVER	SANYO
Q304	2SC2078(D)	NONE	RF POWER AMP	SANYO
Q401	KTC1815(GR)	DISPLAY BACKUP	DISPLAY BACK UP	KEC
Q402	KTC1923(O)	V.C.O BUFFER	V.C.O BUFFER	KEC
Q403	KTC1923(O)	V.C.O	V.C.O	KEC
Q404	KTC1923(O)	NONE	TX, V.C.O, S.W	KEC
Q405	MPS9634(C)	CHARGE PUMP	PLL PUMP	MOTOROLA
Q406	MPS9634(C)	CHARGE PUMP	PLL PUMP	MOTOROLA
Q407	KTA1015(GR)	LED DISPLAY DRIVE	LED DISPLAY DRIVE	KEC
Q408	KTA1015(GR)	LED DISPLAY DRIVE	LED DISPLAY DRIVE	KEC
Q501	KTC1815(GR)	SQUELCH CONTROL	NONE	KEC
Q502	KTA1015(Y)	NONE	ALC	KEC
Q601	MPS9626(C)	WX RF AMP	NONE	MOTOROLA
Q602	MPS9426(C)	WX LOCAL OSC	NONE	MOTOROLA
Q603	KTC9014A	IF AMP	NONE	KEC
Q604	KTC9014A	IF AMP	NONE	KEC
Q605	KTC9014A	IF AMP	NONE	KEC
Q606	MPS9626(C)	WX MIXER	NONE	MOTOROLA

 ${\tt SANYO: TOKYO\ SANYO\ ELECTRIC\ CO.,\ LTD.}$

KEC : KOREA ELECTRONICS CO., LTD.

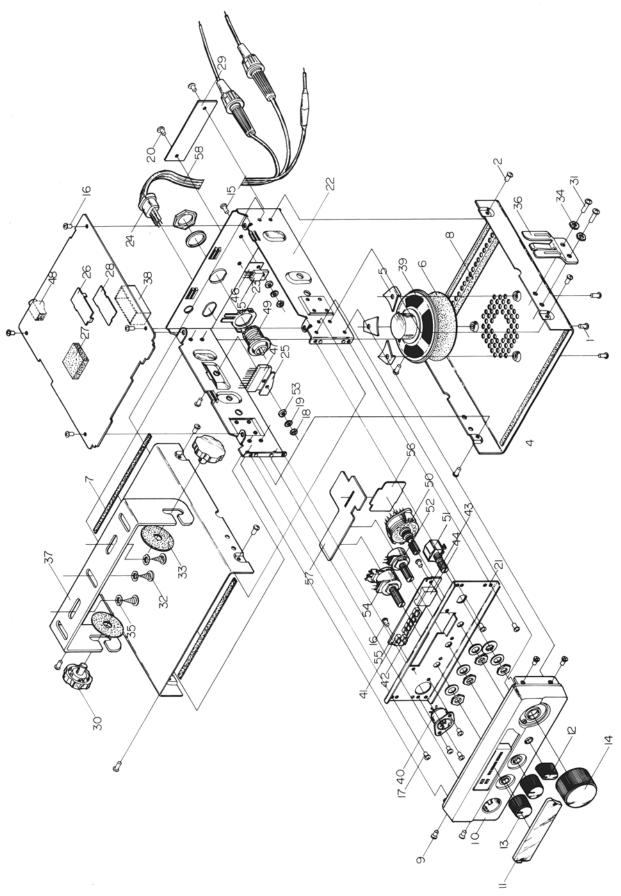
TI : TEXAS INSTRUMENTS INCORPORATED.

MOTOROLA: MOTOROLA SEMICONDUCTOR PRODUCTS INC.

Voltage Chart

CONDITIONS MEASURED ON CH 19 NO SIGNAL

1. Transistor


NO SIGNAL NO MODULATION

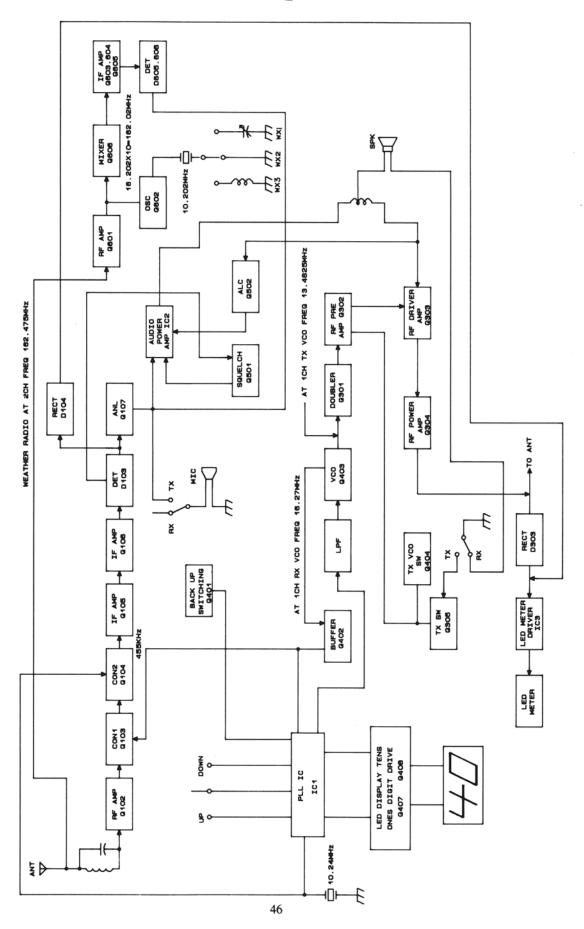
TR NO		Е	С	В	TR NO		Е	С	В	TR NO		Е	С	В
Q101	RX	0	0.2	0.8	Q302	RX	0	13.8	0	Q406	RX	0	2.4	0.6
Q101	TX	0	0	0.4	Q302	TX	1.0	13.7	1.9	Q400	TX	0	2.5	0.6
Q102	RX	0.5	5.0	1.3	Q303	RX	0	13.8	0	Q407	RX	7.5	7.3	7.0
Q102	TX	0	0.8	0.4	Q303	TX	0	13.8	0	Q407	TX	7.3	7.1	7.6
Q103	RX	0.4	11.5	1.2	Q304	RX	0	13.7	0	Q408	RX	7.5	7.1	7.0
Q103	TX	0	13.0	0.5	Q304	TX	0	13.7	0	Q400	TX	7.3	7.0	7.6
Q104	RX	0	5.0	0.6	Q305	RX	8.4	0	8.4	Q501	RX	0	3.5	0.2
Q104	TX	0	0.8	0	Q303	TX	8.4	8.4	7.4	Q301	TX	0	3.4	0.1
Q105	RX	0.7	4.5	1.4	Q401	RX	5.5	13.8	6.2	Q502	RX	0	0	0.1
Q103	TX	0	0.8	0.4	Q401	TX	5.5	13.8	6.2	Q302	TX	0	0	0.1
Q106	RX	0.4	13.8	1.1	Q402	RX	0	3.0	0.7	Q601	RX	0.3	4.1	0.9
Q100	TX	0	13.8	0.2	Q402	TX	0	3.0	0.7	Q602	RX	1.3	4.0	2.0
Q107	RX	0.1	0	0.4	Q403	RX	4.8	8.0	4.2	Q603	RX	0	0.6	0.6
Q107	TX	0.1	0	0.1	Q403	TX	4.8	8.0	4.2	Q604	RX	0	0.6	0.6
Q108	RX	8.4	13.8	9.4	Q404	RX	0	0	0	Q605	RX	0	1.3	0.6
Q108	TX	8.4	13.4	9.4	Q404	TX	0	0	0.7	Q606	RX	0	1.8	0.7
Q301	RX	0	0	0	Q405	RX	0.6	2.4	1.0					
Q301	TX	1.4	8.2	2.1	Q403	TX	0.6	2.5	1.1					

2. ICs

IC No	Pin No	RX	TX	IC No	Pin No	RX	TX	IC No	Pin No	RX	TX
	1	5.6	5.6		17	N.C	N.C		3	3.92	3.82
	2	0.7	0.7		18	1.0	4.9		4	8.05	7.85
	3	0.7	0.7		19	2.6	3.6		5	1.43	1.39
	4	5.6	5.6		20	2.2	2.2	IC2	6	3.25	3.13
	5	5.8	5.8		21	0	0		7	3.41	3.31
	6	5.6	5.6		22	0	0		8	1.18	1.22
	7	5.6	5.6		23	2.5	2.5		9	0	0
IC 1	8	7.8	7.8		24	5.5	5.5		10	6.82	6.63
	9	7.9	7.9		25	4.5	4.5		1	0	0
	10	0	0		26	8.5	8.5		2	10.59	0.07
	11	0	0		27	0.6	1.0		3	10.59	0.07
	12	N.C	N.C		28	0	0	IC4	4	10.64	0.07
	13	N.C	N.C		29	N.C	N.C		5	10.72	0.07
	14	5.4	5.4		30	5.1	1.0		6	11.08	0.07
	15	5.4	5.4		1	13.70	13.32		7	12.68	11.40
	16	N.C	N.C		2	12.56	12.19		8	0	1.7

Exploded View

Model 23 PLUS Exploded View Parts List


No.	Part-Symbol	Description
3	718-092	Cover Upper SPC + Vinyl Sheet t0.8 BLK
4	718-093	Cover Bottom SPC + Vinyl Sheet t0.8 BLK
10	801-231	E.S.C. ABS Lucky 380-81350 Silk
11	813-721	Lens Acryl CLear Silk
12	825-595	Knob (Weather) ABS 94HB Lucky 380-81350
13	825-601	Knob (Control) ABS 94HB Lucky 380-81350
14	825-602	Knob (Channel) ABS 94HB Lucky 380-81350
29	795-016	Name Plate ALP3 18X70Xt0.4
37	723-655	Bracket (SET MTG) SPC t2 BLK-SPray
39	420-103-0	Speaker 2 1/2 8 ohm 0.25W
40	421-529-7	Socket TCS-2250-01-1011 5Pin
41	251-141-4	LED Lamp LTL-433P RED
42	251-142-5	LED Lamp LTL433G GRN
43	251-143-6	LED Lamp LTL-433A AMB
44	252-066-7	LED Display LTD 482 LGC
45	204-010-1	Transistor 2SC 2078(E)
47	222-006-4	IC KIA 7217AP
48	420-705-1	Earphone Jack DHJ-3t
49	421-046-7	Connector CH-239(A) SW-1229
50	430-042-1	Rotary SW SRM-134 20mm
51	439-016-3	Self Return SW SWK 121 DHO-5NH-312 Wiring Type
52	450-425-9	Resistor Variable (VR) K161100-10KB 20mm Shaft
54	450-622-1	Resistor Variable (VR) K161100-5M1112-50KA 20mm Shaft
58	504-507	Power Cord Ass'y.

PARTS LIST 23 PLUS

PARTS LIST 23 PLUS

SYMBOL	DESCRIPTION	PART NO.	SYMBOL	DESCRIPTION	PART NO.
	SPEAKER 2& 1/2" 8 OHM 0.25W	580 076 9 001	IC1	IC LC7185	308 025 N 001
	COVER UPPER SPC+		IC3	IC TL489CP	307 426 9 003
	VINYL SHEET TO.8 BLK	253 007 N 001	D604	DIODE ZENER 5.6V	152 157 9 001
	COVER BOTTOM SPC + VINYL SHEET TO.8 BLK	252 011 N 001	D404	DIODE BZX83-C6V2	152 185 9 001
	E.S.C. ABS LUCKY 380-81350 SILK	380 063 N 001	D106	DIODE ZENER UZ9.1B	152 125 9 001
	LENS ACRYL CLEAR SILK	753 009 N 001	D403	DIODE ZENER UZP-8.2B 1W	152 160 9 002
	KNOB (WEATHER) ABS 94HB		D401	DIODE VARICAP MV2209	154 009 9 001
	LUCKY 380-81350	751 016 N 002	D101,102,104,105,		
	KNOB (CONTROL) ABS 94HB LUCKY 380-81350	751 016 N 003	107,110,301,302, 303,601,602,603, 605,606,625	DIODE SI 1S2473	151 035 9 001
	KNOB (CHANNEL) ABS 94HB LUCKY 380-81350	751 017 N 001	D103,501,502	DIODE GE OA90	150 020 9 001
Q304	TRANSISTOR 2SC2078(E)	172 062 9 001	D402,503	DIODE SI 1N4002	151 082 9 001
IC2	IC KIA7217AP	307 331 9 001	X1	CRYSTAL 10.240MHZ HC-18/U	132 036 9 001
LED6,8	LED LAMP LTL433P RED	158 008 N 002	CF2	CERAMIC FILTER CFU 455HT	143 014 9 001
LED2,3,7	LED LAMP LTL433G GRN	158 008 N 003	CF1	CERAMIC FILTER SFE10.7MJ-M	140 006 9 002
LED4,5	LED LAMP LTL433A AMB	158 008 N 001	CH1	TRANSFORMER CHOKE	047 052 9 001
LED1	LED DISPLAY LTD482LGC	238 003 N 001	T1	TRANSFORMER OPT EI-24	061 070 9 001
· · · · · · · · · · · · · · · · · · ·	EARPHONE JACK DHJ-3T	773 011 N 001	RFC402,403	COIL RF CHOKE 20UH CORE	047 039 9 002
	CONNECTOR CH-239(A) SW-1229	777 009 N 001	L104	COIL IFT 455KHZ-A	047 049 9 004
	SOCKET TCS-2250-01-1011 5 PIN	749 116 9 001	L105	COIL IFT 455KHZ-B	047 049 9 005
SW3	SELF RETURN SW		L101	27MHZ RX ANT	047 039 9 009
	SWK121DHO-5NH-312 WIRING TYPE	091 001 N 001	L102	27MHZ RF AMP (RX)	047 039 9 010
VR2	RES. VARIABLE (VR) K161100-10KB 20MM SHAFT	008 013 N 001	L103	COIL RF 10.6MHZ 03202926ER(RX)	047 039 9 011
VR1	RES. VAR. (VR)		L401	COIL VCO	047 073 9 008
	K161110-5M1112-50KA 20MM SHAFT	008 015 N 001	L301,302	27MHZ RF PRE AMP A (TX)	047 073 9 009
	POWER CORD ASSY	420 002 N 001	L303	27MHZ RF PRE AMP B (TX)	047 073 9 010
	NAME PLATE ALP3 18X70XT0.4	600 009 N 001	L601	COIL 160MHZ RX RF	066 003 N 001
	CONDENSER MIC WMO34CY	560 007 9 001	L602	COIL 455 KHZ RX MIXER	066 003 N 002
	CURLED CORD W/CORD BUSHING	428 131 9 002	L604	COIL 455KHZ RX DET	066 003 N 003
	PUSH SW SKD9791-01-010	088 155 9 002	CT2	CAPACITOR TRIMMER TZO3R200ER	028 091 9 001
	BRACKET (MIC MTG) SPC 60X35XT1	250 213 9 001	X2	CRYSTAL UNIT HC-49/U 16.202MHZ:30PPM	135 009 N 001
	MOUNTING BRACKET SPC T2 BLK-SPRAY	250 004 N 001	L603	COIL 160MHZ RX OSC1	066 003 N 004
	KNOB (LEVER) ABS 94HB GRAY	384 127 9 001	L605	COIL 27MHZ RX OSC2	066 003 N 005
Q107,305	TRANSISTOR KTA1015(Y)	177 043 9 002	1		
Q101,102,103,104, 301,302,402,403	TRANSISTOR KTC1923(O)	176 085 9 001			
Q108,401,404,501	TRANSISTOR KTC1815(GR)	176 095 9 001	1		
Q407,408,502	TRANSISTOR KTA1015GR	176 057 9 001	1		
Q105	TRANSISTOR 2SC380(Y)	176 170 9 001	1		
Q603,604,605	TRANSISTOR KTC9014A(B)	176 011 N 001	1		
Q405,406	TRANSISTOR MPS9634(C)	176 128 9 001	1		
Q106	TRANSISTOR MPS9623(I)	176 115 9 002	1		
			1		
Q601,606	TRANSISTOR MPS9626 (G)	176 150 9 001	I.		1

Block Diagram

