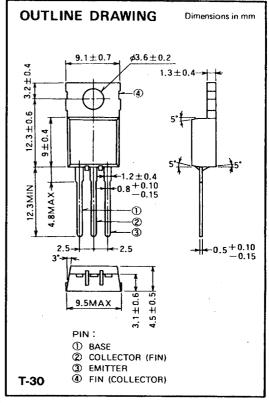
MITSUBISHI RF POWER TRANSISTOR

2SC1969

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION


2SC1969 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers on HF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 12dB
 @V_{CC} = 12V, P_o = 16W, f = 27MHz
- Emitter ballasted construction for high reliablity and good performances.
- TO-220 package similarly is combinient for mounting.
- Ability of withstanding infinite load VSWR when operated at V_{CC} = 16V, P_O = 20W, f = 27MHz.
- Equivalent input/output series impedance:
 Zin=3.4-j2.4Ω @Po=17W, Vcc=12V, f=27MHz
 Zout=5.5-j5.6Ω

APPLICATION

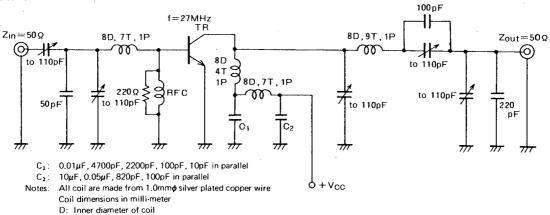
10 to 14 watts output power class AB amplifiers applications in HF band.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit	
V _{CBO}	Collector to base voltage		60	V	
V _{EBO}	Emitter to base voltage		5	v	
V _{CEO}	Collector to emitter voltage	R _{BE} =∞	25	V	
Ic	Collector current		6	· A	
n	Collector dissipation	Ta = 25°C	1.7	w	
Pc		T _C =25°C	20	w	
Tj	Junction temperature		150	•c	
Tstg	Storage temperature		-55 to 150	·c	
Rth-a	Thermal resistance	Junction to ambient	73.5	°c/w	
Rth-c	Thermal resistance	Junction to case	6.25	*c/w	

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)

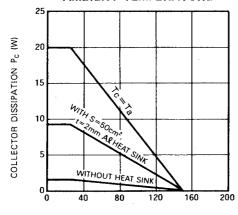

Symbol	Parameter	Test conditions	Limits			
		rest conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	IE=5mA, IC=0	5			٧
V(BR)CBO	Collector to base breakdown voltage	I _C =1mA, I _E =0	60			٧
V _(BR) CEO	Collector to emitter breakdown voltage	I _C =10mA, R _{BE} =∞	25			>
1сво	Collector cutoff current	V _{CB} =30V, I _E =0			100	μΑ
I _{EBO}	Emitter cutoff current	V _{EB} =4V, I _C =0			100	μА
hFE	DC forward current gain *	V _{CE} = 12V, I _C = 10mA	10	50	180	_
Po	Output power	V12V D: -1 (27)	16	18		w
η_{C}	Collector efficiency	V _{CC} =12V, P _{in} =1w, f=27MHz	60	70		%

Note. *Pulse test, P_W=150_µs, duty=5%.
Above parameters, ratings, limits and conditions are subject to change

Item	Х	Α	В	С	D
hFE	10-25	20-45	35-70	55~110	90-180

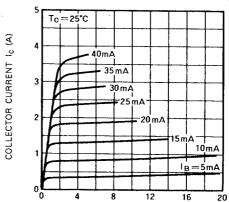
NPN EPITAXIAL PLANAR TYPE

TEST CIRCUIT

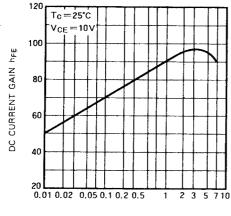


T: Turn number of coil

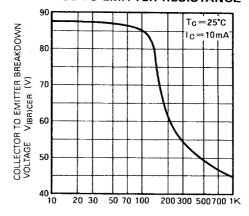
. P : Pitch of coil


TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

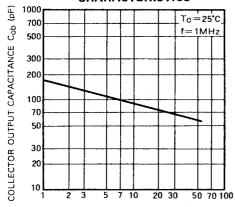

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. **COLLECTOR TO EMITTER VOLTAGE**

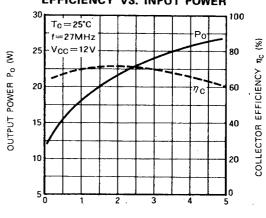

COLLECTOR TO EMITTER VOLTAGE VCE (V)

DC CURRENT GAIN VS. **COLLECTOR CURRENT**

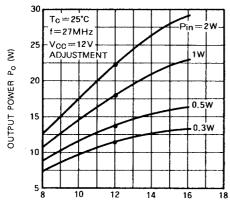
COLLECTOR CURRENT Ic (A)


COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

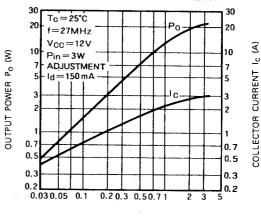
BASE TO EMITTER RESISTANCE R_{BE} (Q)


NPN EPITAXIAL PLANAR TYPE

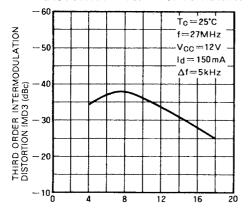
COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE CHARACTERISTICS


COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER


INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE


COLLECTOR SUPPLY VOLTAGE V_{CC} (V)

IN CASE AB OPERATING OUTPUT POWER COLLECTOR CURRENT VS. INPUT POWER

INPUT POWER Pin (W)

THIRD ORDER INTERMODULATION DISTORTION VS. OUTPUT POWER

OUTPUT POWER LEVEL (PEP) (W)