
The RF Line NPN Silicon Push-Pull RF Power Transistor

Designed primarily for wideband large–signal output and driver amplifier stages in the 30 to 500 MHz frequency range.

- Specified 28 Volt, 400 MHz Characteristics Output Power = 125 W Typical Gain = 10 dB Efficiency = 55% (Typ)
- Built-In Input Impedance Matching Networks for Broadband Operation
- Push–Pull Configuration Reduces Even Numbered Harmonics
- · Gold Metallization System for High Reliability
- 100% Tested for Load Mismatch
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

The MRF392 is two transistors in a single package with separate base and collector leads and emitters common. This arrangement provides the designer with a space saving device capable of operation in a push–pull configuration.

PUSH-PULL TRANSISTORS

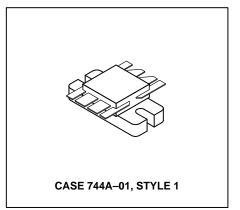
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	VCBO	60	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current — Continuous	IC	16	Adc
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	270 1.54	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Temperature	TJ	200	°C

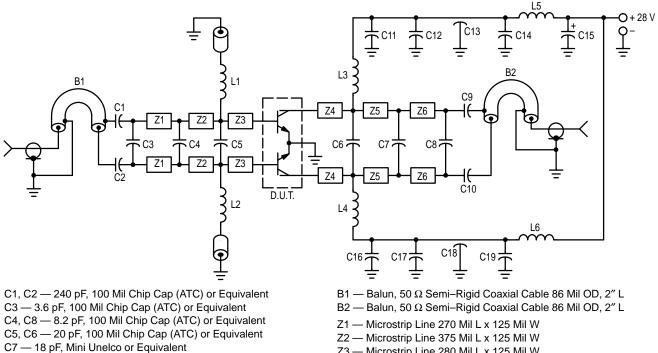
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{θJC}	0.65	°C/W

NOTE:


1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF push-pull amplifier.

125 W, 30 to 500 MHz CONTROLLED "Q" BROADBAND PUSH-PULL RF POWER TRANSISTOR NPN SILICON

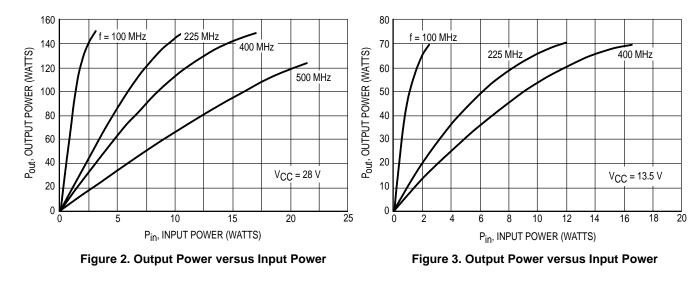

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)			•		
Collector–Emitter Breakdown Voltage ($I_C = 50 \text{ mAdc}, I_B = 0$)	V _(BR) CEO	30	-		Vdc
Collector–Emitter Breakdown Voltage ($I_C = 50 \text{ mAdc}, V_{BE} = 0$)	V(BR)CES	60	_	_	Vdc
Emitter–Base Breakdown Voltage ($I_E = 5.0 \text{ mAdc}, I_C = 0$)	V(BR)EBO	4.0	_	—	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, $I_E = 0$)	ІСВО	—	_	5.0	mAdc
ON CHARACTERISTICS (1)					
DC Current Gain (I _C = 1.0 Adc, V_{CE} = 5.0 Vdc)	hFE	40	60	100	—
DYNAMIC CHARACTERISTICS (1)	•		•	•	•
Output Capacitance (V _{CB} = 28 Vdc, I_E = 0, f = 1.0 MHz)	C _{ob}	_	75	95	pF
FUNCTIONAL TESTS (2) — See Figure 1	•			•	
Common–Emitter Amplifier Power Gain (V _{CC} = 28 Vdc, P _{out} = 125 W, f = 400 MHz)	G _{pe}	8.0	10	-	dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 125 W, f = 400 MHz)	η	50	55	-	%
Load Mismatch (V _{CC} = 28 Vdc, P _{out} = 125 W, f = 400 MHz, VSWR = 30:1, all phase angles)	Ψ	No Degradation in Output Power			

NOTES:

1. Each transistor chip measured separately.

2. Both transistor chips operating in push-pull amplifier.


- C9, C10 270 pF, 100 Mil Chip Cap (ATC) or Equivalent
- C11, C12, C16, C17 470 pF 100 Mil Chip Cap (ATC) or Equivalent
- C13, C18 680 pF Feedthru
- C14, C19 0.1 µF Erie Redcap or Equivalent

 $C15 - 20 \,\mu\text{F}, 50 \,\text{V}$

- L1, L2 0.15 μ H Molded Choke With Ferrite Bead
- L3, L4 2-1/2 Turns #20 AWG, 0.200 ID
- L5, L6 3-1/2 Turns #18 AWG, 0.200 ID

- Z3 Microstrip Line 280 Mil L x 125 Mil W
- Z4 Microstrip Line 300 Mil L x 125 Mil W
- Z5 Microstrip Line 350 Mil L x 125 Mil W
- Z6 Microstrip Line 365 Mil L x 125 Mil W
- Board Material 0.0625" Teflon Fiberglass ϵ_r = 2.5 ± 0.05 1 oz. Cu. CLAD, Double Sided

Figure 1. 400 MHz Test Fixture

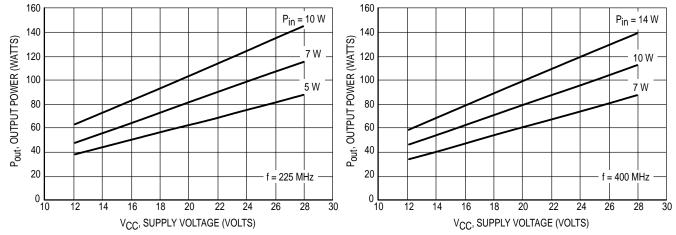


Figure 4. Output Power versus Supply Voltage

Figure 5. Output Power versus Supply Voltage

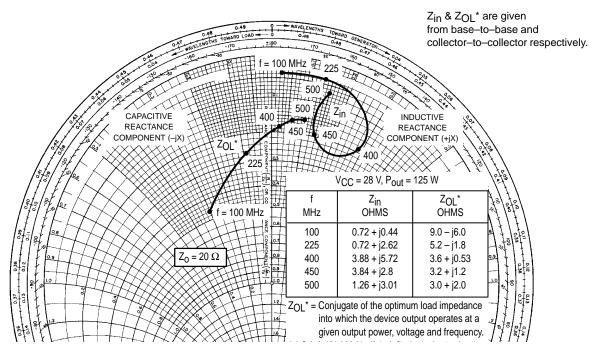
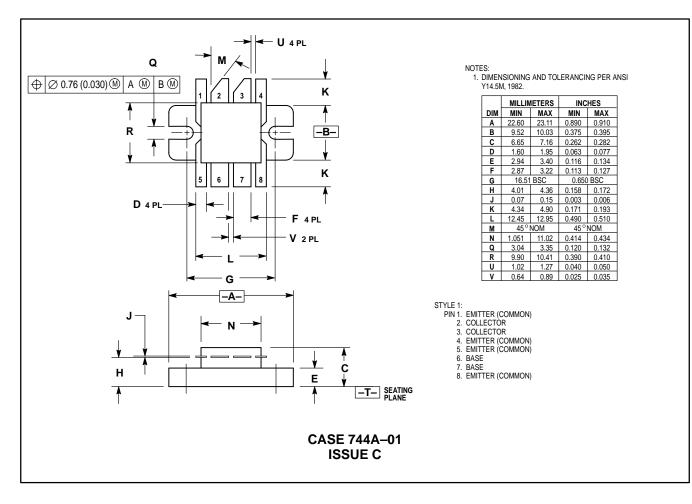



Figure 6. Series Equivalent Input/Output Impedance

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Motorola was negligent regarding the design or manufacture of the part. Motorola and (**M**) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

